
Artificial Intelligence and
 Machine Learning using Python

NATIONAL COUNCIL FOR PROMOTION OF URDU LANGUAGE (NCPUL)

Ministry of Education, Department of Higher Education, Govt. of India

Diploma
in

Computer Applications, Business
Accounting and Multilingual DTP

Title : 300 GSM BGPPL Royal Art Gold
Thickness : 70GSM

Printed By : Makoff Printers
Paper Used : BGPPL Super Nova Maplitho

Quantity : 15000

Year of Publication (3rd Edition) : 2024

National Council for Promotion of Urdu Language (NCPUL) is mandated to take action for

making available in Urdu language the knowledge of scientific and technological development as

well as knowledge of ideas evolved in the modern context. In the emerging information

technological scenario, it was necessary that this technology is made available to the Urdu

speaking population of the country with a view to transform Urdu speaking population into

employable technical workforce.

It was in 1999 when a humble beginning was made and some Multilingual DTP Computer

Centres were set up at select locations. From the beginning, attempt was made to provide standard

course contents and ensure quality in computer education at par with the quality of agencies

dedicated to computer awareness and education in the country. In this context, NIELIT, which is an

approved Government of India agency for imparting computer education in non-formal sector,

was engaged for conducting examination and certification. There has been a demand that course

contents need to be upgraded. Therefore, the NCPUL has entered into a MoU with NIELIT and

delegated the powers of regulating academic standards and examinations to it. This course is now

Computer Applications, Business Accounting & Multilingual DTP (CABA-MDTP) and it is

hoped that course will enable the students pursuing this course to get CCC, CABA-MDTP

Diploma and 'O' Level Certification from NCPUL and NIELIT. The important change in the

eligibility will enable students with+2 qualification to pursue 'O' Level Diploma and those who are

with Matric or equivalent qualification to pursue CCC and CABA-MDTP.

 Prof. Dhananjay Singh
 (Director)

I am sure that the new courseware of NIELIT will meet the requirements of the students and

NCPUL will be in a position to discharge its mandate of linking Urdu to the contemporary

requirements particularly, in the context of ever increasing use of information technology in our

life.

Preface

1

Contents
Chapter 1 ... 8

Introduction to Programming ... 8

1.1 The Basic Model of Computation .. 8

1.1.1 How to Write Algorithms? ... 9

1.1.2 Advantages of an algorithm ... 9

1.2 Flowchart ... 9

1.2.1 Features of the flowchart .. 9

1.2.2 Advantages of flowchart ... 9

1.2.3 Constraints of flowchart ... 10

1.3 Programming Languages ... 10

1.3.1 Machine Language .. 10

1.3.2 Assembly Language .. 11

1.3.3 High Level Language .. 11

1.4 Compilation ... 11

1.5 Testing & Debugging and documentation .. 12

Exercises .. 14

Multiple Choice Questions ... 14

Chapter 2 ... 15

Algorithms and Flowcharts .. 15

2.1 Flowchart symbols .. 15

2.2 Basics of flowcharts /algorithm for sequential processing .. 16

2.3 Decision based processing and iterative processing ... 16

2.3.1 Decision-based Processing ... 16

2.3.2 Iterative (Looping) Processing .. 17

Exercises .. 28

Multiple Choice Questions ... 28

State whether statement is true or false .. 28

Practice Questions ... 28

Chapter 3 ... 29

Programming with Python ... 29

3.1 Python Introduction .. 29

3.1.1 Technical strength of Python .. 29

3.1.2 Introduction to Python Interpreter and program execution ... 29

Artificial Intelligence and Machine Learning using Python

2

3.1.3 Using comments... 30

3.1.4 Literals ... 31

3.1.5 Constants ... 31

3.1.6 Python Built in Data Types .. 32

3.1.7 Python constructs ... 36

3.1.8 Expressions ... 36

3.1.9 Arithmetic Operator .. 37

3.1.10. Relational Operator .. 40

3.1.11. Logical Operators ... 43

3.1.12. bitwise operators ... 45

3.1.13 Conditional Statements.. 50

Multiple Choice Questions ... 70

State whether statement is true or false .. 71

Fill in the blanks .. 71

Lab Excercises ... 72

Chapter 4 ... 73

String Handling and Sequence Types ... 73

4.1 String Handling ... 73

4.1.1. Creating a string.. 73

4.1.2. String indexing .. 73

4.1.3. string slicing ... 75

4.1.4. traversing a string ... 76

4.1.5. Concatenation of string .. 77

4.1.6. Other operations on strings .. 78

4.1.7 accepting input from console ... 80

4.1.8 print statements ... 81

4.1.9 simple programs on strings .. 82

4.2 Sequence Data Types .. 83

4.2.1. list ... 83

4.2.2. tuple .. 83

4.2.3. Dictionary .. 84

4.2.4. Indexing and accessing elements of lists, tuples and dictionaries 85

4.2.5. slicing in list, tuple ... 88

4.2.6. Concatenation on list, tuple and dictionary .. 89

4.2.7. Concept of mutubility ... 91

Artificial Intelligence and Machine Learning using Python

3

Exercises... 97

Multiple Choice Questions ... 97

Chapter 5 ... 100

Functions .. 100

5.1 Top-down Approach of Problem Solving ... 100

5.2 Modular Programming and Functions ... 101

5.2.1. Modular Programming ... 101

5.2.2. Module ... 101

5.2.3. Advantages of Modular Design .. 101

5.3 Function and function parameters .. 102

5.3.1. HOW to Define a Function in Python ... 102

5.3.2. How to Define and Call a Basic Function in Python .. 103

5.3.3. It just prints hello world whenever it is called. ... 103

5.3.4. How to Define and Call Functions with Parameters .. 103

5.4 Local Variables .. 104

5.4.1. Syntax of Local Variable in Python ... 104

5.4.2 How Local Variable Works in python? ... 105

5.5 The Return Statement .. 105

5.6 Default argument values ... 105

5.7 keyword arguments .. 106

5.8 VArArgs parameters. ... 107

5.9 Library function: .. 107

5.9.1. input() ... 107

5.9.2. eval() ... 108

5.9.3. print() function .. 108

5.9.4. print() Parameters... 109

5.9.5 String Functions: ... 109

5.9.6 rfind() function ... 111

5.9.6 Date and time functions .. 114

5.9.7 recursion .. 115

5.9.8 Packages and modules .. 116

Exercise .. 121

Multiple choice questions ... 121

State whether statement is true or false .. 122

Fill in the blanks .. 122

Artificial Intelligence and Machine Learning using Python

4

LAB exercise .. 123

Chapter 6 ... 124

File Processing ... 124

6.1 Concept of Files ... 124

6.2 File opening in various modes and closing of a file .. 124

6.3 Reading from a file .. 124

6.4 Writing onto a file, File functions - open() .. 125

6.5 close() .. 125

6.6 read() .. 126

6.7 readline() .. 126

6.8 readlines() .. 127

6.9 write() ... 127

6.10 writelines() ... 128

6.11 tell() ... 129

6.12 seek() ... 129

6.13 Command Line arguments ... 130

Exercise .. 135

Multiple choice Question .. 135

Chapter 7 ... 138

Machine Learning and AI .. 138

7.1. Types of Machine Learning Algorithms (supervised, unsupervised) 138

7.1.1 Supervised Machine Learning .. 139

7.1.2. Unsupervised Machine Learning ... 140

7.1.3... 140

7.2. Feature engineering .. 141

7.3. Preparing Data .. 141

7.3.1 Training Data, Test data ... 142

7.3.1.1 What is Training Data? .. 142

7.3.1.2 Data Validation... 142

7.4. Introduction to different Machine Learning Algorithms .. 143

7.5. Training the Machine learning model and predicting the results 144

7.6. Applications of Machine Learning. Introduction to Artificial Intelligence 148

7.6.1 Applications of Machine Learning:……………………………………………………………………….…………148

1. Image Recognition: ... 148

2. Speech Recognition: .. 149

Artificial Intelligence and Machine Learning using Python

5

3. Traffic prediction: ... 149

4. Product recommendations: .. 149

5. Self-driving cars: ... 150

6. Email Spam and Malware Filtering: ... 150

7. Virtual Personal Assistant: .. 151

8. Online Fraud Detection: ... 151

9. Stock Market trading: .. 151

10. Medical Diagnosis: .. 151

11. Automatic Language Translation:... 152

7.6.2 Introduction to Artificial Intelligence: ... 152

7.7. Common Applications of AI: ... 154

7.7.1. AI Application in E-Commerce: ... 154

7.7.2. Applications of Artificial Intelligence in Education: ... 154

7.7.3. Applications of Artificial Intelligence in Lifestyle: .. 155

7.7.4. Applications of Artificial intelligence in Navigation: ... 156

7.7.5. Applications of Artificial Intelligence in Robotics: .. 156

7.7.6 Applications of Artificial Intelligence in Human Resource .. 156

7.7.7. Applications of Artificial Intelligence in Healthcare ... 156

7.7.8. Applications of Artificial Intelligence in Agriculture .. 156

7.7.9. Applications of Artificial Intelligence in Gaming .. 157

7.8. Advantages and Disadvantages of AI .. 157

7.9. Common examples of AI using python ... 158

Exercise .. 161

Objective Type Questions ... 161

Subjective Type Questions ... 163

Chapter 8 ... 164

Data Science and Analytics Concepts .. 164

8.1. What is Data Science and Analytics? The Data Science Process .. 164

8.2. Framing the problem .. 166

8.3. Collecting ... 167

8.4. Processing .. 168

8.4.1 Six stages of data processing ... 168

8.5. Cleaning and Munging Data .. 169

8.6. Exploratory Data Analysis ... 170

8.7. Visualizing results ... 172

Artificial Intelligence and Machine Learning using Python

6

Exercise .. 173

OBJECTIVE TYPE QUESTIONS .. 173

SUBJECTIVE TYPE QUESTIONS .. 175

Chapter 9 ... 176

Introduction to NumPy (7 Hrs.)... 176

9.1. Array Processing Package .. 176

9.2. Array types .. 177

9.3. Array slicing .. 177

9.3.1 Negative Slicing .. 178

9.4. Computation on NumPy Arrays – Universal functions ... 180

9.4.1 Array arithmetic .. 181

9.5. Aggregations: Min, Max, etc. ... 182

9.5.1. Python numpy sum: .. 182

9.5.2. Python numpy average: .. 183

9.5.3. Python numpy min : ... 183

9.5.4. Python numpy max ... 184

9.6. N-Dimensional arrays ... 185

9.7. Broadcasting .. 187

9.8. Fancy indexing .. 191

9.9. Sorting Arrays ... 192

Exercise .. 194

Objective Type Question .. 194

Subjective Type Questions ... 196

Chapter 10. Data Analysis Tool: Pandas .. 197

10.1. Introduction to the Data Analysis Library Pandas .. 197

10.2. Pandas objects – Series and Data frames .. 197

10.2.1 Pandas Series .. 198

10.2.2 Pandas Dataframe .. 199

10.3 Data indexing and selection .. 200

10.4 Nan objects .. 206

10.5 Manipulating Data Frames .. 207

10.6 Grouping .. 212

10.7 Filtering .. 214

10.8 Slicing ... 217

10.9 Sorting .. 220

Artificial Intelligence and Machine Learning using Python

7

10.10 Ufunc .. 222

Exercise .. 223

OBJECTIVE TYPE QUESTIONS .. 223

SUBJECTIVE TYPE QUESTIONS .. 226

Chapter 1 : Introduction to Programming

8

Chapter 1

Introduction to Programming

1.1 The Basic Model of Computation
To complete a task there arises a need to write a set of instructions and these set of instructions are
called program and to solve problems on a computer, one must first write a step-by-step solution
using simple instructions for operations and then run the programme to obtain the results. There
are numerous ways to solve a given problem, and thus solutions may differ depending on the
thought process of an individual.
Nevertheless, some fundamental steps in problem solving remains unchanged. These fundamental
steps are:

a. Defining the problem and choosing the data types.
b. Pinpointing the computation steps and their sequence required to obtain the solution.
c. Choosing decision points, i.e. selecting the appropriate operations at specific state.
d. Knowing what to expect and comparing it to the actual values.

Step 1. Understanding the Problem
First, understand the problem by reading it carefully and try to figure out what is the expected
output. Do not start drawing flowcharts right away. Take some test data and solve the problem
manually on paper. Let us take an example and understand how to solve the problem
systematically:
Software engineer before writing the actual program writes algorithm or flowchart.
Step 2. Generate potential solutions
The next step is to create a list of possible solutions to the problem you’ve discovered. There are
many ways to generate solutions. This can be done individually or in a group setting.
Step 3. Choose one solution
Once a list of possible solutions has been made, it’s time to put your to the test. In order to find
the best solution for the problem, analyse every possible resolution and decide which is best for
the situation you are in. One might want to consider many elements before choosing one solution.
These elements include efficacy, practicality, timeliness, resources, and cost. This is also where
risk management will be used to help make a decision. Like brainstorming, choosing a solution
doesn’t have to be done alone.

ALGORITHM
What is an Algorithm and its features?
Software engineers typically use algorithms to plan and solve problems. An algorithm is a series
of steps to solve a particular problem. Alternatively, an algorithm is an ordered, unique set of steps
that produces a result and finishes in a finite amount of time.
Algorithm has the following characteristics:
1. Can be written in any language suitable to developer.
2. Easy to understand.
3. Very simple, complete, clear and systematic program flow.
4. No standard format and have no defined rules of writing.

Chapter 1 : Introduction to Programming

9

1.1.1 How to Write Algorithms?

Let us write an algorithm to find the volume of a cuboid.
Step 1 - Define algorithm input: Many algorithms capture the data to be processed. To calculate
the volume of the cuboid, you have to enter the length, width and height of the cuboid.
Step 2 - Define Variables: Algorithm variables can be used in multiple places. Three variables,
the length, width and height of the cuboid, can be defined as LENGTH, WIDTH and HEIGHT.
Step 3 - Outline the algorithm's operations: Use input variable for computation purpose, e.g. to
find area of cuboid multiply the LENGTH, WIDTH and HEIGHT variable and store the value in
new variable (say) VOLUME. An algorithm's operations can take the form of multiple steps and
even branch, depending on the value of the input variables.
Step 4 – Algorithm output: Use the input variable for computational purposes. To find the area
of the box, multiply the LENGTH, WIDTH, and HEIGHT variables and store their values in a
new variable (e.g. VOLUME). The operation of the algorithm can take the form of multiple sets
and can also branch according to the value of the input variable.
1.1.2 Advantages of an algorithm

 It is a step-by-step solution to a given problem and is much easier to understand.
 The algorithm uses a precise system.
 It is programming language independent, so anyone can easily understand it without any

programming knowledge.
 Each step of the algorithm has its own logical sequence, which is easy to debug.

1.2 Flowchart
Flowchart is another method widely used for planning and solving the programming problems.
Flowchart is a combination of two words ‘Flow’ and ‘Chart’. ‘Flow’ means direction/sequence
and ‘Chart’ means diagram i.e. unlike algorithm, flowchart explains the sequence of steps
involved diagrammatically i.e. in picture form. This is another commonly used programming
tool. Observing at the flow chart, you can easily understand the operations performed by the
system and the sequence of operations. Flowcharts are often regarded as blueprints for designs
used to solve specific problems.
1.2.1 Features of the flowchart

 Uses fixed figures to define the steps involved i.e. have rules.
 Depicts Logical flow very clearly.
 Being graphical representation it is simple and very easy to understand.
 No programming required
 Easy to debug

1.2.2 Advantages of flowchart

 Suitable for large systems: While developing large systems numerous programmers
are involved and develop different modules. Under such circumstances, division of
flowchart becomes easy and programmers draw flowchart of his/her assigned module.

 Effective communication and easy to understand: Since, it is a pictorial representation
of program so it is quite simple and easy to understand.

Chapter 1 : Introduction to Programming

10

 Logics can be easily interpreted: Logics defined in the flowchart can be easily depicted
as conditions/ decision-making figures can distinguished from others and the
directions can be identified.

 Testing becomes easier: Being a graphical representation the testing in case of
flowchart becomes very easy and the program flow in the wrong direction can be easily
identified.

1.2.3 Constraints of flowchart

 Flowchart require more time to draw thus it is a laborious work to draw a flowchart.

 Modifications are carried out with great difficulty in case of the flowchart.

1.3 Programming Languages
A computer can only do what a person convey to do through set of instructions, which is a program.
Program need to be written in a language, which a computer can understood and perform the task
desired.
Computer programming languages has been broadly classified into the three categories:

a) Machine Language

b) Assembly Language

c) High Level Language

1.3.1 Machine Language

Machine language, additionally called machine code, is the primary language of computers. It is
read by the computer’s imperative processing unit (CPU), includes binary numbers, and seems
like a totally lengthy collection of 0s and 1s. Since binary code is the best language that computer
hardware can understand, in the long run the source code of a human-readable programming
language should be translated into machine language through a compiler or interpreter.
Each CPU has its own machine language. The processor reads and processes instructions that
instruct the CPU to perform simple tasks. An instruction consists of a specific number of bits.
An instruction written in machine language consists of two parts. The first part is the operation to
perform and the second part is the location or address where the data is stored, on which the
operation is to be performed.

OPCODE OPERAND
(Operation Code) (Location/ Address)

Advantages and Disadvantages of Machine Language

 Machine language allows you to use your computer quickly and efficiently. You don't need
a translator to translate the code. The computer understands this directly.

 Machine dependent i.e. every machine has its own unique code. Program executed on one
machine will not run in another.

 All operation codes have been remembered.

Chapter 1 : Introduction to Programming

11

 All memory addresses have to memorize.
 Errors are difficult to correct or find in programs written in machine language.
 Very complex and difficult to understand.

1.3.2 Assembly Language

Set of instructions or a program can be easily written in alphanumeric character instead of 0’s and
1’s. Expressive and easily memorable characters are nominated for this purpose. For instance,
MUL is used for multiplication and DIV for division, SUB for subtraction etc. Programs in which
such characters are used such programs are said to be written in assembly language.
Advantages and Disadvantages of Assembly Language

 It is fast in speed and execution time is very less.
 Machine or hardware dependent. Program executed on one machine will not run in another.
 Writing large programs in assembly language is a tedious task.
 It is very complex and difficult to understand.
 More lines of code to be written even for a small program

1.3.3 High Level Language

High-level language was introduced to abolish the difficulties faced by the programmers in writing
programs in machine language and assembly language. High-level language eliminated the major
problem of the programmers by making program machine independent i.e. a program written on
one machine could be executed on another machine without any difficulty.
Advantages and Disadvantages of High-Level Language

 It is a convenient language because it is written in simple English words that can be easily
understood and learned.

 No machine dependency and a program developed on one machine can be easily executed
on another.

 Modification or editing is quite easy and simple.
 Debugging and Testing is simple.
 It has well defined syntax which need to be followed

1.4 Compilation
A programmer writes code in a language which is called a source language and the program is
known as source program/ source code. The computer understands only machine code or object
code. So there arise a need of translator that converts source language into machine code or the
object code and this translator is known as compiler.
Compilation is a technique for converting source code to machine code. The compiler is used to
assist in carrying out this task of conversion. The compiler checks the source code for any error
whether it is related to syntax, ranges, limits before generating the object code. If the source code
is free of such errors only than object code is generated otherwise the developer has to remove all
such errors before repeating the process again.

Source Code Machine Code Object Code

Chapter 1 : Introduction to Programming

12

The compilation process consists of four stages:
a. Pre-processing
b. Compilation
c. Assembling
d. Linking

Pre-Processing: In this stage, the developer written code is
first passed to the pre-processor, which expands source code.
After expanding the code, it is forwarded to compiler.
Compiling: At the stage of compiling, the source code is
converted into assembly code using compiler.
Assembling: During assembling code in assembly language is
transformed into object code with the support an assembler.
Linking: In this final stage, the job of the linker is to link the
object code of our program with the object code of the library
files and other files. The output of the linker is the executable
file.

 Source Code

 Machine Code

1.5 Testing & Debugging and documentation
Testing and Debugging, these two tasks in software development have their own importance

and these tasks are being carried out to ensure that the final software is error free and working as
expected. Most of the time these two tasks are thought as same, however they are very different
and have their own functionality.

The difference between the testing and debugging processes is that testing identifies software
flaws but does not correct them. Debugging, as opposed to testing, is a more structured procedure
where issues are not only found but also separated and fixed. Whereas, testing is the process of
identifying flaws or mistakes in a piece of software; it can be carried out manually by a tester or
automatically. Debugging is the process of fixing bugs that were discovered during the testing
stage. Debugging is the responsibility of developers and programmers, and it cannot be automated.

Debugging is actually the process of correcting a software bug. It is the process of locating,
analyzing, and eliminating errors. This activity starts when the programme doesn't work as it
should and ends when the issue has been fixed and the software has been tested successfully. Errors
must be fixed at every stage of debugging, which makes it a very difficult and time-consuming
operation.

Testing on the other hand is the process of confirming and validating that the software or an
application is bug free and satisfies the technical specifications established by its design and

Pre-processing

Compiling

Assembling

Linking

Chapter 1 : Introduction to Programming

13

development. Moreover, effectively and effectively fulfils the needs the user while managing all
the exceptional and boundary values.

Documentation in software engineering is the canopy term that includes all written
documents and materials dealing with software product development. All software development
products, whether created by a small team or a large corporation, require some related
documentation. Different types of documents are created through the whole (SDLC).
Documentation exists to explain product functionality, unify project-related information, and
allow for discussing all significant questions arising between stakeholders and developers.
Documentation varies at different stages as under:
Types of Software Documentation:

a) Requirement Documentation:

This document contains the requirements on the basis of which the software was developed
and contains the description of how the software shall perform and which environment setup
would be appropriate to have the best out of it. These are generated while the software is under
development and is supplied to the tester groups too.

b) Architectural Documentation:
Architecture documentation is a special type of documentation that concerns the design. It
contains very little code and is more focused on the components of the system, their roles and
working. It also shows the data flows throughout the system.

c) Technical Documentation:
These contain the technical aspects of the software like API, algorithms etc. It is prepared
mostly for the software developers. This form of documentation helps in choosing the technical
manpower requirement when the maintenance and support is to be provided for the software.

d) End-user Documentation
As the name suggests these are made for the end user. It contains support resources for the end
users. This kind of documentation in actual helps end user to understand the functionality of
the software and its features so that the end user could use the available features as per need.

Chapter 1 : Introduction to Programming

14

Exercises

Multiple Choice Questions
1. Which one of the following is a step for starting start development?

a. Understanding problem / requirement
b. Coding
c. Testing
d. None of the above

2. Which of the method is used by software development organization for program
execution and flow before starting actual coding?

a. Algorithm
b. Flowchart
c. Any of the above
d. None of the above

3. An algorithm has a feature that:
a. Algorithm can be written in any language as per user choice
b. Algorithm has defined symbols
c. Algorithm uses specific language
d. None of the above

4. A flowchart has following feature that:
a. Flowchart explains program in a particular language and uses no symbols
b. Flowchart uses special symbols for program flow
c. Flowcharts can be drawn using any symbol as per user choice
d. None of the above

5. Machine language is written in:
a. C language
b. English Language
c. 0’s and 1’s
d. None of the above

STATE WHETHER STATEMENT IS TRUE OR FALSE
1. Computer without the need of translator can understand high-level language. (T/F)
2. Machine language instruction has two parts OPCODE and OPERAND. (T/F)
3. Machine language is very easy to understand. (T/F)
4. Compiler is used to translate High-level language to Machine Language. (T/F)
5. Testing and Debugging are the same processes. (T/F)

 FILL IN THE BLANKS

1. Compilation is a technique to translate source code into ______________________.
2. Debugging is a process to identify the ________ and fix them.
3. High-level language is machine __________.
4. Assembly language uses __________ instead of 0’s and 1’s.
5. Written record of the software development is called _____________.

Chapter 2:Algoritham and Flowchart

15

Chapter 2

Algorithms and Flowcharts

2.1 Flowchart symbols
Flowchart use different shapes to expression flow and steps in process involved. These shapes are
call flowchart symbols.
The symbols used and their description:

Symbol Shape Symbol Usage

Oval Used for starting and ending
the flowchart.

Parallelogram

Used for taking input from the
users or other external sources
and displaying/sending output
to the terminal.

Rectangle

Used for representing the
processing being carried out.

Arrow

Used for expressing the
flow/direction/sequence of
execution.

 No

 Yes

Diamond Used for making decision and
to choose path accordingly.

 1 Circle Used for Entry Connector

 2 Circle Used for Transfer Connector

Table 1: Flowchart Symbols

Chapter 2:Algoritham and Flowchart

16

2.2 Basics of flowcharts /algorithm for sequential processing
Writing a logical step-by-step method to solve the problem is called the . In other words, an
algorithm is a procedure for solving problems. In order to solve a mathematical or computer
problem, this is the first step in the process. An algorithm includes calculations, reasoning, and
data processing. Algorithms can be presented by natural languages, pseudocode, and flowcharts,
etc.
A is the graphical or pictorial representation of an algorithm with the help of different symbols,
shapes, and arrows to demonstrate a process or a program. With algorithms, we can easily
understand a program. The main purpose of using a flowchart is to analyse different methods.

Algorithm Flowchart
It is a procedure for solving problems. It is a graphic representation of a process.
The process is shown in step-by-step
instruction.

The process is shown in block-by-block
information diagram.

It is complex and difficult to understand. It is intuitive and easy to understand.
It is convenient to debug errors. It is hard to debug errors.
The solution is showcased in natural
language.

The solution is showcased in pictorial
format.

It is somewhat easier to solve complex
problem.

It is hard to solve complex problem.

It costs more time to create an algorithm. It costs less time to create a flowchart.
Table 2: Difference Between Algorithm and Flowchart

2.3 Decision based processing and iterative processing

2.3.1 Decision-based Processing

Conditional/Selection logic, also known as decision logic, is used for making decisions. It is used
for selecting the appropriate path out of the two or more alternative paths in the program logic. It
is depicted as either an IF…THEN…ELSE or IF…..THEN structure. The flowchart shown below
illustrate the logic of these structures.

Figure 1: Decision-Based Processing

Chapter 2:Algoritham and Flowchart

17

Depending on the result received after the comparison of A and B the next step is executed. This
is an example of decision based processing.
2.3.2 Iterative (Looping) Processing

Many jobs that are required to be done with the help of a computer are repetitive in nature. For
example, the calculation of the salary of different workers in a factory is done by the (No. of hours
worked) x (wage rate). This calculation will be performed by an accountant for each worker every
month. Such types of repetitive calculations can easily be done using a program that has a loop
built into the solution of the problem. The loop is defined as a block of processing steps repeated
a certain number of times. An endless loop repeats infinitely and is always the result of an error.
Figure below illustrates a flowchart depicting the concept of looping. It shows the flowchart for
printing values 1, 2, 3…, 20.

Figure 2: Iterative Processing

In above figure the current value of A is compared with 21. If the current value of A is less than
21, steps 3 and 4 are repeated. As soon as the current value of A becomes more than 21, the path
corresponding to “NO” is followed, and the repetition process stops.

Exchanging values of two variables using flowchart and algorithm.

Exchanging values of two variable means that our aim is to interchange the values of the two given
variable.
Suppose we have two variable A and B and having original values of 10 and 15 respectively. So,
after interchange the values of A should be 10 and and B should be 15 and 10.

Chapter 2:Algoritham and Flowchart

18

Solution1: Exchanging values using a temporary variable

Flowchart

Algorithm
Step 1: Begin

Step 2: Input Number (A,B)

Step 3: Assign the value of A into
Temporary variable. i.e Temp =A. Assign the
value of B into A. Assign the value of Temp
into B.

Step 4: Display A and B.

Step 5: End

Example 1: Exchanging values of two variables

Solution 2: Exchanging values without using a temporary variable

Flowchart

Algorithm

Step 1: Begin

Step 2: Input Number (A,B)

Step 3: Assign to A the sum of A and B.
Subtract B from A and assign the result
value to B. Subtract B from A and assign
the result value to A.

Step 4: Display the value of ‘A’ and ‘B’.

Step 5: End

Example 2: Exchanging values without variables

Start

Input Number (A, B)

Temp = A
A= B

B= Temp

Display A, B

Stop

Start

Input Number (A, B)

A = A + B
B = A - B
A = A - B

Display A, B

Stop

Chapter 2:Algoritham and Flowchart

19

Summation of a set of numbers using flowchart and algorithm.

Let us take an example that we have to take ten numbers from the user and display sum of these
ten numbers

Flowchart

 True

 False

Algorithm

Step 1 : Begin

Step 2: Initialize counter as 1 and sum as 0
i.e i

Step 3: Get the number ‘N’

Step 4: Assign to sum the result value
obtained after adding the previous value of
sum and the read number N i.e. sum =sum
+N.

Step 5: Repeat step 3 to 4 till ‘i’ is less than
equal to 10, i.e. i <= 10.

Step 6: Display the value of ‘sum’.

Step 7: End

Example 3: Summation of a set of numbers

Start

Input Number (N)

sum= sum + N
i= i+1

Display sum

Stop

i =1, sum=0

Is

i <=10

Chapter 2:Algoritham and Flowchart

20

Decimal to Binary Base Conversion using flowchart and algorithm.

Decimal number is converted into binary by dividing the number successively by 2 and printing
the remainder in reverse order.

 False

 True

Algorithm
Step 1: Begin

Step 2: Input the decimal number ‘N’.

Step 3: Initialize ‘Binary’ variable with empty string.

Step 4: Calculate Remainder R using MOD function
i.e. R = N MOD 2

Step 5 : Convert R from int data type to string and
concatenate with Binary string variable. i.e.
 Binary = Binary + R

Step 6: Divide N with 2 and quotient will become the
new N.

Step 7: Repeat step 4 to 6 until N becomes less than
or equal to zero.

Step 8: Reverse the string contained in Binary
variable.

Step 9: Print the Binary variable number.

Step 10 : End

Example 4: Decimal Base to Binary Base conversion

Start

Input Number ‘N’

Calculate Remainder
R= N MOD 2

 Type cast R into string
 Perform concatenation
 Binary = Binary + R

Binary = ‘’

N = N/2

Is
N < = 0

Binary = Reverse (Binary)

Print Binary

Stop

Chapter 2:Algoritham and Flowchart

21

To perform Reversing Digits of Number using flowchart and algorithm.

Target is take an input number like 1234 and generate the reverse as 4321.
Flowchart

 True

 False

Algorithm

Step 1: Begin

Step 2: Input a positive number ‘A’

Step 3: Initialize New Number by 0 i.e.
NN=0

Step 4: Calculate Remainder R using MOD
function i.e. R = A MOD 10

Step 5: Multiply New Number with 10 and
add remainder to product and now the
resultant value will become the new number
i.e NN = NN * 10 +R
Divide the input number with 10 and store
the resultant value. i.e. A = A/10

Step 6: Repeat step 4 to 5 till A > 0.

Step 5: Display ‘NN’

Step 6 : End

Example 5: Reverse digits of an integer

Start

Input Number A

Stop

R = A MOD 10

Is
A > 0

NN = 0

NN = NN * 10 +R
A = A/10

Display NN

Chapter 2:Algoritham and Flowchart

22

To find Greatest Common Divisor using flowchart and algorithm
Flowchart

 True False

 True

 False

 True

 False

Algorithm
Step 1: Begin

Step 2: Input a positive number ‘A’ and ‘B’

Step 3: Check the smaller between two numbers.

Step 4: Initialize ‘Small’ variable with the smaller
number.

Step 5: Initialize i with 1. i.e i = 1.

Step 6: Find remainders R1 and R2 by dividing A, B
with i.

Step 7: Check R1 and R2 both equal to Zero (0).

Step 8 : If both remainders are 0 then GCD =i.

Step 9 : Increment i by 1. i.e i = i+1

Step 10: Repeat step 6 to 9 till ‘i’ is less than ‘small’

Step 11: Display GCD

Step 12: End

Example 6: GCD (Greatest Common Divisor) of two numbers

Start

Input Number A, B

Stop

Is
A > B

Small= A Small = B

i=1

Is R1,R2 both
Equal to 0.

R1 = A mod i

R2 = B mod i

GCD= i

i=i+1

Is
i<=small

Display GCD

Chapter 2:Algoritham and Flowchart

23

Flowchart and algorithm to test whether a number is a Prime Number.

Flowchart

 False

 True

 False

 True

Algorithm

Step 1: Begin

Step 2: Input a positive number ‘A’

Step 3: Initialize counter I by 2 i.e. I=2

Step 4: Calculate Remainder R using MOD
function i.e. R = A MOD I

Step 5: Till remainder R is not equal to Zero,
increment I by 1 and repeat step 4.

Step 6: Compare Number and Counter.

Step 7: Display PRIME or NOT PRIME.

Step 8 : End

Example 7: Test whether a number is prime

Start

Input Number A

Stop

R = A MOD I

Is
R = = 0

I = 2

 Display
“A is PRIME”

Is
A = = I

I=I+1

Display
“A is NOT PRIME”

Chapter 2:Algoritham and Flowchart

24

Flowchart and algorithm to calculate Factorial of Number:

Suppose factorial of 4 is to be calculated then it will be 24 = 4*3*2*1.
Flowchart

 False

 True

 False

Algorithm

Step 1: Begin

Step 2: Input a positive number greater
than 1.

Step 3: Initialize Fact by 1 i.e. Fact=1

Step 4: Multiply Fact with number and
product will become new value of Fact.
i.e. Fact = Fact * A.

Step 5: Decrement A by 1.

Step 6 : Repeat Step 4 to Step 5 till A
remains greater than 1.

Step 7: Display the value of Fact which
will be factorial of the given number.

Step 6 : End

Example 8: Factorial Computation

Start

Input Number A

Stop

Fact = Fact * A

Fact=1

 Display
“Fact”

Is
A > 1

A= A-1

Chapter 2:Algoritham and Flowchart

25

Flowchart to find Fibonacci Series:

A series written as:
0,1,1,2,3,5,8…. is called Fibonacci series. In this series current number is the sum of previous
two numbers.

Step 1: Start

Step 2: Declare variables i, a,b , show

Step 3: the variables, a=0, b=1, and show =0

Step 4: Enter the number of terms of
Fibonacci series to be printed

Step 5: Print First two terms of series

Step 6: Use loop for the following steps

-> show=a+b
-> a=b
-> b=show
-> increase value of i each time by 1
-> print the value of show

Step 7: End

Example 9: Fibonacci sequence

Algorithm for reversing an array.

Suppose we are having an array with 5 elements as below:
 Arr[5] =

Target is to reverse the contents of array as under:
 Arr[5] =

1 3 5 7 9

9 7 5 3 1

Chapter 2:Algoritham and Flowchart

26

The algorithm to complete the desired task is as given below:
Step 1: Begin
Step 2: Input an array.
Step 3: Initialize i=0 , L = Length of array
Step 4: Repeat steps 5 to till i<L
Step 5: temp = array’s L-1 element
Step 6: array’s L-1 element = array[i] element
Step 7: array[i] element = temp
Step 8: Increment ‘i’ and decrement L
Step 9: Display reverse array
Step 10 : End

Algorithm for finding largest of in a given array.

The below given algorithm will find the largest element and smallest element in given array.

Chapter 2:Algoritham and Flowchart

27

Step 1: Input the array elements.
Step 2: Initialize small = large =
arr[0]
Step 3: Repeat from i = 2 to n
Step 4: if(arr[i] > large)
Step 5: large = arr[i]
Step 6: if(arr[i] < small)
Step 7: small = arr[i]
Step 8: Print small and large.

Example 10: Find largest number in an array

Chapter 2:Algoritham and Flowchart

28

Exercises

Multiple Choice Questions
1) Flowcharts uses ________ symbol for input.

a. Oval
b. Square
c. Triangle
d. None of the above

2) Flowcharts uses ________ symbol for decision making.
a. Oval
b. Rectangle
c. Diamond
d. None of the above

3) Algorithm uses which symbol for processing.
a. Rectangle
b. Oval
c. Triangle
d. None of the above

4) To repeat some fixed steps until a condition is met is called __________.
a. Decision based processing
b. Iterative processing
c. Sequential processing
d. None of the above

5) Iteration is also called __________.
a. Decision based processing
b. Looping
c. Any of the above
d. None of the above

State whether statement is true or false
1) Flowcharts cannot be used for demonstrate iterative processing. (T/F)
2) Algorithm are only used for decision bases processing demonstration. (T/F)
3) Iterative processing means to repeat a fixed steps until a condition is met. (T/F)
4) Sequential processing and Decision based processing are same. (T/F)
5) Sequential processing and Iterative based processing are same.

Practice Questions
1) Draw a flowchart to write table of 2.
2) Draw a flowchart to find area and perimeter of a rectangle.
3) Draw a flowchart to find maximum and minimum number from given three numbers.
4) Write an algorithm to find cube and square of number.
5) Write an algorithm to find even and odd number.

Chapter 3 : Programming with Python

29

Chapter 3

Programming with Python

3.1 Python Introduction

3.1.1 Technical strength of Python
In today’s computer world Python is gaining popularity day by day and big companies

including Google, Yahoo, Intel, IBM etc. are widely using Python. So many reasons exist for the
popularity Python from its availability to ease of use.
Python has the following technical characteristics:

a. Free and Open Source: Python is free to use and available to download from its official
website

b. Easy-to-learn: Python is comparatively very easy to learn and use than many other
computer languages. The syntax, structures, keywords etc. used in Python are very simple
and easy to understand.

c. Extensive Libraries: Library is the strength of Python. When we download Python it
comes with the huge library having immense inbuilt modules which makes coding easier
and saves valuable time.

d. Portable: Key strength of python is its portability. Users can run python programs on
various platforms. Suppose you wrote a program in windows and now you want to run this
program on Linux or Mac Operating system, You can easily run your programs on
(Windows, Mac, Linux, Raspberry Pi, etc). You can say Python is a platform-independent
programming language.

e. Interpreted: Python is interpreted language, which means it does not require any kind of
compiler to run the program. Python converts its code into bytecode, which gives instant
results. Python is interpreted means that its code is executed line by line, which makes it
easier to debug.

f. Object-Oriented: Python can be used as an object-oriented language in which data
structure and functions are combined in a single unit. Python supports both object-oriented
and procedure-oriented approach in the development. The object-oriented approach deals
with the interaction between the objects on the other hand procedure-oriented approach
deals with functions only.

g. GUI Programming: Python provides many solutions to develop a Graphical User
Interface (GUI) very fast and easily.

h. Database Connectivity: Python supports all the database required for the development
of various projects. Programmers can pick the best suitable database for their projects.
Few databases which are supported by Python are MySQL, PostgreSQL, Microsoft SQL
Server etc.

3.1.2 Introduction to Python Interpreter and program execution
An interpreter is a kind of program that executes other programs. When you write Python
programs, it converts source code written by the developer into intermediate language which is
again translated into the native language / machine language that is executed.

Chapter 3 : Programming with Python

30

The python code you write is compiled into python bytecode (0’s and 1’s), which creates file with
extension “.py”. The bytecode compilation happened internally, and almost completely hidden
from developer. Compilation is simply a translation step, and byte code is a lower-level,
and platform-independent, representation of your source code. Roughly, each of your source
statements is translated into a group of byte code instructions. This byte code translation is
performed to speed execution byte code can be run much quicker than the original source code
statements.
Python is an interpreted language since the programs written in Python are executed using an
interpreter not by a compiler. In case of the languages like C, C++ the program written are
compiled first and the source code is converted into byte code i.e. (0’s and 1’s).

Python, doesn’t need to converted into binary. You just run the program directly from the source
code.
3.1.3 Using comments

Commenting your code helps explain your thought process, and helps you and others to understand
later about your code and flow of program. This allows you to more easily find errors, to fix them,
to improve the code later on, and to reuse it in other applications as well.
Commenting is important to all kinds of projects, no matter whether they are small, medium, or
large. It is an essential part of your workflow, and is seen as good practice for developers. Without
comments, things can get confusing, real fast.

3.1.3.1 Single-Line Comments: Such comment starts with a hash character (#), and is

followed by text that contains further explanations.

Program to add two numbers
a = 5
b = 7
c = a + b
print(c)

In above example, single-line comment has been written using (#) statement in the beginning. By
writing comments the user could easily understand that the program has been developed for
adding two numbers.

Source
Code

Interpreter Output

Chapter 3 : Programming with Python

31

3.1.3.2 Multiple-Line Comments: We can add a multiline string (triple quotes) in your code,

and place your comment inside it as explained below:

‘‘‘
Program will do :
1. Addition
2. Subtraction
’’’
a = 5
b = 7
c = a + b

3.1.4 Literals

Literal is actually a data value assigned to a variable or given in a constant. Like 29, 1, “Python”,
‘Yes’ etc. Literals supported by Python:

3.1.4.1 String Literals

Strings literals are formed by surrounding text between single or double quotes. Example,
‘Python’, “Hello World”, ‘We are learning Python” etc. Strings are sequence of characters and
even numeric digits are treated as characters once enclosed in quotes. Multiline string literals are
also allowed like
“This is world of programming
Python is a best to learn
We are working”

3.1.4.2 Numeric Literals

Python supports the following types of numeric literals:
 A = 99 # Integer literal
 B = 21.98 # Float literal
 C = 5.13j # Complex literal

3.1.4.3 Boolean Literals

Booleans literals are also supported Python in which have the values in True or False. Like
X = True
Y = False

3.1.5 Constants

Constants are those items which holds the values directly and these values can’t be changed
during the execution of the program thus they are called as constants. For example,
>>> print(123)
>>>print(23.56)
>>>print(“Python World”)

Chapter 3 : Programming with Python

32

Now, during the execution of the program the value of 123 or 23.56 or “Python World” cannot
be modified. When you run the program the output will be:

Program Output Explanation

>>> print(123)

123
Numeric constant digits are directly
printed as it is on the monitor as output.

>>>print(23.56)

23.56
Float constant digits are directly printed
as it is on the monitor as output along
with the decimals.

>>>print(“Python World”)

Python World

In case of string literals, the string or
characters enclosed in quotes are printed
only i.e. output is printed on without
quotation marks on the screen.

3.1.6 Python Built in Data Types

Variables can store data of different types, and different types can do different things. Python
supports the following built in data types:

3.1.6.1 Numeric

Numeric data types are used to store the numeric values in a variable. For example,
 A = 99
 B = 21.5
Numeric data is of various types so accordingly the numeric data types are of the following types

a) int

b) float

c) complex

Chapter 3 : Programming with Python

33

int(integer): Whole numbers are stored in variables as integer data type. For example,
 a = 12
 b = 16
float: The numbers having decimal are stored as float data types. For example,
 a = 12.6
 b = 17.9
Complex: Complex data type is used to contain complex numbers, which have real and

imaginary part. For example,
 a = 5 + 6j
 b = 8 + 9j
 A = 12
B = float(15.6)
C = 5 + 7j
print(A)
print(B)
print(C.real, C.imag)

Output:
12
15.6
5.0 7.0

3.1.6.2 Dictionary

Python provides another composite called a dictionary, which is similar to a list in that it is a
collection of objects.

Dictionaries are Python’s implementation of a data structure that is more generally known as an
associative array. A dictionary consists of a collection of key-value pairs. Each key-value pair
maps the key to its associated value.

You can define a dictionary by enclosing a comma-separated list of key-value pairs in curly braces
({}). A colon (:) separates each key from its associated value:

empty dictionary
my_dict = {}

dictionary with integer keys
my_dict = {1: 'apple', 2: 'ball'}

Chapter 3 : Programming with Python

34

dictionary with mixed keys
my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()
my_dict = dict({1:'apple', 2:'ball'})

from sequence having each item as a pair
my_dict = dict([(1,'apple'), (2,'ball')])

As you can see from above, we can also create a dictionary using the built-in dict() function.

3.1.6.3 Boolean

Python Boolean type is one of the built-in data types provided by Python, which represents one
of the two values i.e. True or False. Generally, it is used to represent the truth values of the
expressions. For example, 1==1 is True whereas 2<1 is False. For Example:
 a = 10
 b = 20
 print(a == b)
 Output:
 False

3.1.6.4 Set

Set is another data type in Python and it works as mathematical sets. Very much similar to lists
and sets are denoted as curly brackets. Set is an unordered collection of data types that is
iterable, mutable and has no duplicate elements. For example:

result = set([1, 2, 4, 4, 3, 3, 3, 6, 5])
 print(result)
 Output:
 {1, 2, 3, 4, 5, 6}

3.1.6.5 Sequences

Sequences are containers with items stored in a deterministic ordering. Each sequence data type
comes with its unique capabilities.

There are many types of sequences in Python.

Types of Sequence in Python:

a) Strings:

In python, the string is a sequence of Unicode characters written inside a single or
double-quote. Python does not have any char type as in other languages (C, C++),
therefore, a single character inside the quotes will be of type str only.

Chapter 3 : Programming with Python

35

1. To declare an empty string, use str() or it can be defined using empty string inside
quotes.

Example of String in Python:
 name = "LearnPython"
 print(name)
 Output:
 LearnPython
2. Strings are immutable data types, therefore once declared, we can’t alter the string.

Though, we can reassign it to a new string.
b) Lists:

Lists are a single storage unit to store multiple data items together. It’s a mutable data
structure, therefore, once declared, it can still be altered.
A list can hold strings, numbers, lists, tuples, dictionaries, etc.
1. To declare a list, either use list() or square brackets [], containing comma-separated
values.
Example of Lists in Python:

list_1 = ["LearnPython ", "Sequences", "Tutorial"] # [all string list]
print(f'List 1: {list_1}')

list_2 = list() # [empty list]
print(f'List 2: {list_2}')

list_3 = [2021, ['hello', 2020], 2.0] # [integer, list, float]
print(f'List 3: {list_3}')

list_4 = [{'language': 'Python'}, (1,2)] # [dictionary, tuple]
print(f'List 4: {list_4}')

Output:
List 1: [‘LearnPython, ‘Sequences’, ‘Tutorial’]
List 2: []
List 3: [2021, [‘hello’, 2020], 2.0]
List 4: [{‘language’: ‘Python’}, (1, 2)]

c) Tuples:

Just like Lists, Tuples can store multiple data items of different data types. The only
difference is that they are immutable and are stored inside the parenthesis ().
To declare a tuple, either use tuple() or parenthesis, containing comma-separated values.
Example of Tuple in Python:

tuple_1 = ("LearnPython ", "Sequences", "Tutorial") # [all string tuple]
print(f'tuple 1: {tuple_1}')
tuple_2 = tuple() # [empty tuple]
print(f'tuple 2: {tuple_2}')
tuple_3 = [2021, ('hello', 2020), 2.0] # [integer, tuple, float]
print(f'tuple 3: {tuple_3}')
tuple_4 = [{'language': 'Python'}, [1,2]] # [dictionary, list]
print(f'tuple 4: {tuple_4}')

Chapter 3 : Programming with Python

36

Output:
tuple 1: (‘PythonGeeks’, ‘Sequences’, ‘Tutorial’)
tuple 2: ()
tuple 3: [2021, (‘hello’, 2020), 2.0]
tuple 4: [{‘language’: ‘Python’}, [1, 2]]

3.1.7 Python constructs
3.1.7.1 Assignment Statement
Assignment statement serves various purpose and used for creating a variable, initializing a
variable or modifying the value of an existing variable.
The operator used for assignment is “=” also known as assignment operator.
Variable placed on the Left Hand Side (L.H.S) of the assignment operator is set with the constant
value or value of another variable present on the Right Hand Side (R.H.S) of the assignment
operator.
Example 1. Program to explain the assignment statement and initialization.
Consider a variable A whose value is to be initialized with 10 then the syntax would be:
A = 10
print (A)
Output:
10

In above example, the constant value 10 is assigned to the variable A and it can be verified with
the print statement that A is holding the value 10.
Example 2. Program to explain the assignment statement.

A = 10
B = A
print(B)
Output:
10

In above example, A is assigned the value of 10 and thereafter B is assigned with the value of A
i.e. so in result B will be holding the value i.e. 10 as shown in the above code.

3.1.8 Expressions
Expressions are used to obtain the desired intermediate or final results. Expressions means
combination of values, which can be constants, strings, variables and operators. Few examples of
expressions are as follows:
12 + 3
12 / 3 * (1+2)
12 / a
a * b * c

Chapter 3 : Programming with Python

37

With the above example, it is clear that expressions are combination of operands and operators
and produce desired final or intermediate results. In examples given 12, 3, 1, 2, a, b, c are
operands and ‘+’, ‘/’, ‘*’ are operators.
Expressions are written on the RHS of the assignment operator and their result value is stored in
a variable for future reference.
Example 3. Program for explaining the working of expressions.
A = 2 + 3
B = A* 5
C = B / A
D = (A+ B) – (C + A)
print(A)
print(B)
print(C)
print(D)

Output:
5
25
5
20

In above example, the value of A is printed as 5 after evaluating the expression ‘2+3’, value of B
is 25 and assigned after evaluating the expression ‘A * 5’ since the value of A is ‘5’. Value of C
is evaluated using an expression where both operands are variables and D is evaluated using
more than one expression.
3.1.9 Arithmetic Operator
Operators are applied on the operand to obtain the desired results and there are different types of
operators. The arithmetic operators are the most basic operators used for in general calculations
or arithmetic operations. The arithmetic operators include +, -, /, *, % (modulus), ** (exponent)
etc.
Example 4. Explaining Binary Operators with Program

A = 2 + 2
B = 5 * 2
C = 10 / 2
D = 10 % 2
print(A)
print(B)
print(C)
print(D)

Output:
4
10
5
0

Chapter 3 : Programming with Python

38

In above example, all operators are binary operators i.e. operators are applied on two operands to
obtain the desired output. The modulus (%) operator returns the remainder value of the division
process when 10 is divided by 2 and store the remainder value in the variable D.
Example 5. Explaining Binary Operators with Program

#Explaining Binary Operators with Program

A = 6+2 # Addition Operator
B = 6-2 # Subtraction Operator
C = 6 * 2 # Multiplication Operator
D = 6/2 # Division Operator
E = 6%2 # Modulus Operator
F = 6**2 # Exponential Operator

print("Sum of 6+2 is: ", A)
print("Subtraction of 6-2 is: ", B)
print("Multiplication of 6*2 is: ", C)
print("Division of 6/2 is: ", D)
print("Modulus of 6%2 is: ", E)
print("Exponential of 6**2 is: ", F)

#End of Program

Output:
Sum of 6+2 is: 8
Subtraction of 6-2 is: 4
Multiplication of 6*2 is: 12
Division of 6/2 is: 3.0
Modulus of 6%2 is: 0
Exponential of 6**2 is: 36

Example 6. Program to calculate the profit of a businessperson.

Program to calculate the profit of a businessperson.

CP = float (input ("Enter the Cost Price of the Item: "))
SP = float (input ("Enter the Selling Price of the Item: "))

P = SP - CP

print ("Profit earned is: ", P)

#End of Program

Chapter 3 : Programming with Python

39

Output:
Enter the Cost Price of the Item: 100
Enter the Selling Price of the Item: 150
Profit earned is: 50.0

Example 7. Program to calculate area of rectangle.

#Program to calculate area of rectangle

length = int(input("Enter the length: "))
width = int(input("Enter the width: "))
area = length * width
print("Area of Rectangle is : ",area)

#End of Program
Output:
Enter the length: 5
Enter the width: 4
Area of Rectangle is: 20

Example 8. Program to explain the functionality of Modulus Operator (%).

#Program to explain the functionality of Modulus Operator (%)

num1 = int(input("Enter the first number : "))
num2 = int(input("Enter the second number : "))

quotient = num1/num2
remainder = num1%num2

 # Division operator (/) returns the quotient after dividing num1 by num2
Modulus operator (%) returns the remainder after dividing num1 by num2

print("Quotient is : ",quotient)
print("Remainder is: ",remainder)
#End of Program

Output:
Enter the first number : 15
Enter the second number : 3
Quotient is : 5.0
Remainder is: 0

Chapter 3 : Programming with Python

40

Example 9. Program to explain the operator precedence.

#Program to explain the operator precedence.

A = (4+5)/3*2-1
B = 6/3+2*(3+2)
print("Value of A is: ",A)
print("Value of B is: ",B)

#End of Program
Output:
Value of A is: 5.0
Value of B is: 12.0

The operator precedence from highest to lowest is as under:

i. () (Parenthesis)

ii. ** (Exponential)

iii. – (Negation)

iv. / (Division) * (Multiplication), % (Modulus)

v. + (Addition) - (Subtraction)

According to operator precedence the value of A and B is calculated after evaluating the
expressions as under:
Value of A is calculated as :

Step 1: (4+5) is evaluated and result is 9.
Step 2: 9/3 is evaluated and result is 3.
Step 3: 3 * 2 is calculated and result is 6.
Step 4: 6-1 is calculated and result is 5.

Value of B is calculated as :

Step 1: (3+2) is evaluated and result is 5.
Step 2: 6/3 is evaluated and result is 2.
Step 3: 2*5 is calculated i.e. result is 10.
Step 4: 2 + 10 is calculated and result is 12.

3.1.10. Relational Operator
The purpose of relational operator is to compare the values of the operands and find the relation
among the operands. The relational operators are binary operators since the comparison can be
performed between two operands. Upon comparing the operands, the relational operators return
Boolean value which is either True or False.

Chapter 3 : Programming with Python

41

The relational operators are as follows:

Symbol Function Perform Format Output

> Greater than x > y Returns True if x is greater than y; else False

< Less than x < y Returns True if x is less than y; else False

== Equal x==y Returns True if x is equal to y; else False

!= Not Equal x != y Returns True if x is not equal to y; else False

>= Greater than equal to x >= y Returns True if x is greater than or equal to y;
else False

<= Less than equal to x <= y Returns True if x is less than or equal to y; else
False

Example 10. Program to explain the relational operators >, <.

#Program to explain the relational operators.

x = int(input("Enter the value of x: "))
y = int(input("Enter the value of y: "))

print("The Value returned by the x>y expression is")
print(x>y)
print("\n") # For inserting one extra line

print("The Value returned by the x<y expression is")
print(x<y)
print("\n")

Output:

Enter the value of x: 12
Enter the value of y: 15
The Value returned by the x>y expression is
False

The Value returned by the x<y expression is
True

Chapter 3 : Programming with Python

42

In the above example, the value given to x is 12 and y is 15. Since x is less than y thus x>y returns
False whereas x<y returns True.
Example 11. Program to explain the relational operators ==, !=.

x = int(input("Enter the value of x: "))
y = int(input("Enter the value of y: "))

print("The Value returned by the x==y expression is")
print(x==y)
print("\n")

print("The Value returned by the x!=y expression is")
print(x!=y)
print("\n")
#End of Program

Output:

Enter the value of x: 24
Enter the value of y: 24
The Value returned by the x==y expression is
True

The Value returned by the x!=y expression is
False

In the above example, the value given to x is 24 and y is 24. Since x and y are equal thus x==y returns
True whereas x<y returns False.
Example 12. Program to explain the relational operators >=, <=.

x = int(input("Enter the value of x: "))
y = int(input("Enter the value of y: "))

print("The Value returned by the x>=y expression is")
print(x>=y)
print("\n")

print("The Value returned by the x<=y expression is")
print(x<=y)
print("\n")

#End of Program

Output:

Enter the value of x: 12

Chapter 3 : Programming with Python

43

Enter the value of y: 23
The Value returned by the x>=y expression is
False

The Value returned by the x<=y expression is
True

3.1.11. Logical Operators
The purpose of logical operator is to combine two or more conditional statements. Logical
operators are very useful in many situations where the result is dependent on more than one
conditions.
The logical operators are as follows:

Operator Format Output

or x > y or a >b Returns True; if one of the statement is True.

and x > y and a >b Returns True; if both statements are True.

not not (x>y or a>b) Opposite the result, returns False if the result is true

Example 13. Program to explain the ‘or’ logical operator.

x = 5
y = 10
a = 7
b = 9

C = (x>y) or (a<b)

print("Result upon applying 'or' operator : ",C)

#End of Program

Output:

Result upon applying 'or' operator : True

In example above, variable x, y, a, b are initialized with values 5,10,7 and 9 respectively. Output
of (x>y) is False since 5 is smaller than 10 and the output of (a<b) is True since 7 is smaller than
9.
Logical operator ‘or’ is applied on the two statements (x>y), (a>b) having output False and True
respectively. Since ‘or’ logical operator produces True output when any of the statements is True
and in this case one statement is True (a<b). Thus, the output is True.

Chapter 3 : Programming with Python

44

Example 14. Program to explain the ‘and’ logical operator.

x = 5
y = 10
a = 7
b = 9
C = (x>y) and (a<b)

print("Result upon applying 'and' operator : ",C)

#End of Program
Output:

Result upon applying 'and' operator : False

In example above, logical operator ‘and’ is applied on the two statements (x>y), (a>b)

having output False and True respectively. Since ‘and’ logical operator produces True output only
when both statements are True and in this case only one statement is True (a<b). Thus, the output
is False.
Example 15. Program to explain the ‘not’ logical operator.

x = 5
y = 10
a = 7
b = 9

C = not((x>y) and (a<b))

print("Result upon applying 'not' operator : ",C)

#End of Program

Output:

Result upon applying 'not' operator : True

In example above, logical operator ‘not’ is applied on the result of the statement ((x>y) and
(a>b)) which is False. Since ‘not’ logical operator reverses, the input provided. Thus, the final
output becomes True.

Chapter 3 : Programming with Python

45

Example 16. Program to explain the precedence of the logical operator.

x = 5
y = 10
a = 7
b = 9

C = not(a<b) or (x>y) and (a<b)

print("Result upon applying 'not' operator : ",C)

Output:

Result: False

Precedence order of the logical operators from highest to lowest is ‘not’, ‘and’ then ‘or’.
Precedence order could be understood from the above example. According to the precedence first
of all the ‘not(a<b)’ is evaluated and output of the statement is False. In second step, (x>y) and
(a<b) is evaluated which produces output False since (x>y) is False. Finally, the preference is
given to ‘or’ and the output of step1, step2 is combined using ‘or’ operator. The result produced is
False since output of both steps 1 and step 2 is False.
3.1.12. bitwise operators
Bitwise operators are similar to other operators but they operate on bits instead of integers or
characters etc. The smallest unit of data storage is bit which is represented in 0 and 1. Bitwise
operators works on the bits i.e. 0 and 1.
The functionality of bitwise operators is:

Symbol Function

>> Right shift

<< Left shift

& AND

| OR

^ XOR

~ One’s Compliment

Chapter 3 : Programming with Python

46

Example 17. Program to explain the working of Right Shift Operator (>>)

num1 = 9
num2 = 10

new_num1 = num1 >> 1
new_num2 = num2 >> 3

print("Value of num1 after Right Shift is : ",new_num1)
print("Value of num2 after Right Shift is : ",new_num2)

Output:

Value of num1 after Right Shift is : 4
Value of num2 after Right Shift is : 1

In above example, variable ‘num’ has been initialized to ‘9’. Assume computer is using eight digits
to represent a binary number then number ‘9’ is represented as 0000 1001. After applying right
shift operator on digit ‘9’ the number in binary form becomes 0000 0100 i.e. 4 which is the
new_num1. Understand that the digits are shifted to right by 1 position i.e. 1 bit is lost and the
empty position created on the left is filled by ‘0’ digit.
Similarly, variable ‘num2’ has been initialized to ‘10’ and using eight digits to represent a binary
number the number ‘10’ is represented as 0000 1010. After applying right shift operator on digit
‘10’ the number in binary form becomes 0000 0001 i.e. 1 which is the new_num2. Understand that
the digits are shifted to right by 3 positions i.e. 3 bits are lost and the empty position created on
the left is filled by ‘0’ digit.

Example 18. Program to explain the working of Left Shift Operator (<<)

num1 = 10
num2 = 5

new_num1 = num1 << 1
new_num2 = num2 << 2

print("Value of num1 after Left Shift is : ",new_num1)
print("Value of num2 after Left Shift is : ",new_num2)

Output:

Value of num1 after Left Shift is : 20
Value of num2 after Left Shift is : 20

Chapter 3 : Programming with Python

47

In above example, variable ‘num1’ has been initialized to ‘10’. Assume computer is using eight
digits to represent a binary number then number ‘10’ is represented as 0000 1010. After applying
right shift operator on digit ‘10’ the number in binary form becomes 0001 0100 i.e. 20 which
new_num1. Understand that the digits are shifted to left by 1 position i.e. 1 bit is lost and the empty
position created on the right is filled by ‘0’ digit.
Similarly, variable ‘num2’ has been initialized to ‘5’ and using eight digits to represent a binary
number then number ‘5’ is represented as 0000 0101. After applying right shift operator on digit
‘5’ the number in binary form becomes 0001 0100 i.e. 20 which new_num2. Understand that the
digits are shifted to left by 2 positions i.e. 2 bits are lost and the empty position created on the right
is filled by ‘0’ digit.

Example 19. Program to explain the working of Bitwise AND Operator (&)

num1 = 8
num2 = 7
num3 = 10
res1 = num1 & num2
res2 = num1 & num3
print("Result1 : ",res1)
print("Result2 : ",res2)

Output:
Result1 : 0
Result2 : 8

In above example, variables ‘num1’, ‘num2’, ‘num3’ has been initialized to ‘8’, ‘7’ and ‘10’
respectively.
Now in binary format:
num1 = 8 = 0000 1000
num2 = 7 = 0000 0111
res1 = 0 = 0000 0000 (num1 & num2)
Bitwise AND (&) Operator gives output 1 if both the corresponding bits are 1, otherwise 0. So,
we can notice that in variable ‘res1’ all bits are 0 since none of the corresponding bits are 1 in
variable ‘num1’ and ‘num2’.
num1 = 8 = 0000 1000
num3 = 10 = 0000 1010
res2 = 8 = 0000 1000 (num1 & num3)
Bitwise AND (&) Operator gives output 1 if both the corresponding bits are 1, otherwise 0. So,
we can notice that in variable ‘res2’ 1 is present where the corresponding bit is also 1 in variable
‘num1’ and ‘num2’.

Chapter 3 : Programming with Python

48

Example 20. Program to explain the working of Bitwise OR Operator (|).

num1 = 8
num2 = 7
num3 = 10
res1 = num1 | num2
res2 = num1 | num3
print("Result1 : ",res1)

print("Result2 : ",res2)

Output:

Result1 : 15
Result2 : 10

In above example, variables ‘num1’, ‘num2’, ‘num3’ has been initialized to ‘8’, ‘7’ and

‘10’ respectively.
Now in binary format:
num1 = 8 = 0000 1000
num2 = 7 = 0000 0111
res1 = 15 = 0000 1111 (num1 & num2)
Bitwise OR (|) Operator gives output 1 if any of the corresponding bits are 1, otherwise 0. So,
we can notice that in variable ‘res1’, 1 is present where any of the corresponding bit is 1 in
variable ‘num1’ and ‘num2’.
num1 = 8 = 0000 1000
num3 = 10 = 0000 1010
res2 = 10 = 0000 1010 (num1 & num3)
Bitwise OR (|) Operator gives output 1 if any of the corresponding bits are 1, otherwise 0. So,
we can notice that in variable ‘res2’, 1 is present where any of the corresponding bit is 1 in
variable ‘num1’ and ‘num2’.

Example 21. Program to explain the working of Bitwise XOR Operator (^).

num1 = 8
num2 = 7
num3 = 10

res1 = num1 ^ num2

res2 = num1 ^ num3

print("Result1 : ",res1)

print("Result2 : ",res2)

Chapter 3 : Programming with Python

49

Output:

Result1 : 15
Result2 : 2

In above example, variables ‘num1’, ‘num2’, ‘num3’ has been initialized to ‘8’, ‘7’ and ‘10’
respectively.
Now in binary format:
num1 = 8 = 0000 1000
num2 = 7 = 0000 0111
res1 = 15 = 0000 1111 (num1 & num2)
Bitwise XOR (^) Operator gives output 1 if one of the corresponding bits is 1 and other is 0,
otherwise it gives output as 0. So, we can notice that in variable ‘res1’, 1 is present where any of
the corresponding bit is 1 in variable ‘num1’ and ‘num2’.
num1 = 8 = 0000 1000
num3 = 10 = 0000 1010
res2 = 2 = 0000 0010 (num1 & num3)
Bitwise XOR (^) Operator gives output 1 if one of the corresponding bits is 1 and other is 0,
otherwise it gives output as 0. So, we can notice that in variable ‘res2’, 1 is present where any of
the corresponding bit is 1 in variable ‘num1’ and ‘num2’.

Example 22. Program to explain the working of Bitwise One’s complement Operator (~).

num1 = 8
num2 = 7

res1 = ~num1
res2 = ~num2

print("Result1 : ",res1)
print("Result2 : ",res2)

Output:

Result1 : -9
Result2 : -8

In above example, variables ‘num1’, ‘num2’, ‘num3’ has been initialized to ‘8’, ‘7’ and ‘10’
respectively. Bitwise One’s complement Operator (~) is a unary operator.
Now in binary format:
num1 = 8 = 0000 1000
res1 = -9 = - 0000 1001 (~num1)
num2 = 7 = 0000 0111
res1 = -8 = - 0000 1000 (~num2)

Chapter 3 : Programming with Python

50

3.1.13 Conditional Statements
In our life, many times we encounter situations where we have to make a decision be it

your game, favourite food, movie, or the cloth. Similarly, in programming conditional statements
help us to make a decision based on certain conditions. These conditions are specified by a set of
conditional statements having boolean expressions which are evaluated to a boolean value of true
or false.
We have seen in the flowcharts that flow of the program changes based on the conditions. Thus
the condition based on decisions plays an important role in programming.

 False

 True

The various types of conditional statements are:

i. if statement

ii. if-else statement

iii. if-elif-else statement

3.1.8.1 if STATEMENT

The if statement test a condition and when the condition is ‘true’ a statement or a set of statements
are executed and the actions are performed as per the instructions given in the statements otherwise
the statements attached with the if statement are not executed.
Syntax of the if statement:
 if (expression) :
 statement
Example 23. Program to explain the working of if statement.

#Program to explain the working of if statement.

marks = int(input("Enter the marks : "))

if(marks > 80):
 print("Grade A")

name = input("Enter the name :")

if(name =="Kapil"):
 print("You entered name Kapil")

Condition Statement

Statement

Chapter 3 : Programming with Python

51

#End of Program

Output:

Enter the marks : 85
Grade A
Enter the name :Prashant

In the above example, user entered marks as 85 and the if condition is checked since marks are
greater than 80 so the condition becomes ‘true’ and the print statement is executed and output
‘Grade A’ is printed on the screen.
Then, the second input was asked and user entered name as Prashant and the if condition is
checked since name entered is not ‘Kapil’ so the condition becomes ‘false’ and the print
statement is not executed.
So, from the execution of the program we can conclude that the statement attached with if
statement is executed only when if condition is ‘true’ otherwise they are not executed and behave
like a comment.
Example 24. Program to check the correct input entered by the user.

num1 = int(input("Enter a number greater than 1 : "))

if(num1>1):
 print("Correct Number")

End of Program

Output:

Enter a number greater than 1 : 5
Correct Number

Since the user entered number value as 5, so the if statement becomes true and the statement
attached to it gets printed.

3.1.8.2 If-else STATEMENT
The if-else statement test a condition and when the condition is ‘true’ a statement or a set of
statements attached with if block are executed and otherwise the statements attached with else
block is executed. In if-else statement the programmer get an option to write a set of code that
will be executed when the test condition is even ‘false’ in comparison to if statement.
Syntax of the if-else statement:
 if (expression) :
 block1 statements
else:
 block2 statements

Chapter 3 : Programming with Python

52

Example 25. Program to explain the working of if-else statement.

marks = int(input("Enter the marks : "))

if (marks >=50):
 print("Student is Pass")
else :
 print("Student is Fail")

End of Program

Output:

Enter the marks : 47

Student is Fail

In above example, user has been asked for the input and user entered marks as 47 since the
marks are less than 50 so the if condition becomes false. Consequently, the block attached with if
is not executed and the control is transferred to statements attached to the else block and are
executed.

Example 26. Program to find bigger number between two numbers.

#Program to find bigger number between two numbers.

num1 = int(input("Enter the FIRST number : "))
num2 = int(input("Enter the SECOND number : "))

if(num1>num2):
 print("FIRST number is Bigger")
else:
 print("SECOND number is Bigger")

End of Program

Output:

Enter the FIRST number : 25
Enter the SECOND number : 52
SECOND number is Bigger

Chapter 3 : Programming with Python

53

Example 27. Program to find a number is even or odd.

num1 = int(input("Enter the number : "))

if(num1%2==0):
 print("Number is EVEN")
else:
 print("Number is ODD")

End of Program

Output:

Enter the number : 22
Number is EVEN

Example 28. Program to display a menu and calculate area of a square and volume of a

cube.

print("1. Calculate area of Square")
print("2. Calculate volume of a Cube")
choice = int(input("Enter your choice (1 or 2): "))
side = int(input("Enter the side length: "))
if(choice==1):
 print("Area of Square is : ", side * side)
else:
 print("Volume of Cube is : ",side * side * side)

End of Program

Output:

1. Calculate area of Square
2. Calculate volume of a Cube

Enter your choice (1 or 2): 2

Enter the side length: 10
Volume of Cube is : 1000

Chapter 3 : Programming with Python

54

3.1.8.3 if-elif-else STATEMENT
In case of if or if-else statement only a single condition is tested and the statements attached are
execute. However, many times situation is seen where more than one statement is to be tested
before reaching to the conclusion.
Syntax of the if-elif-else statement:
 if (expression):
 block1 statements

elif (expression):
 block2 statements

else:
 block3 statements

Example 29. Program to explain the working of if-elif-else statement.

marks = int(input("Enter the marks : "))

if(marks>=75):
 print("Student got DISTINCTION")
elif(marks <75 and marks >=50):
 print("Student is PASS")
else:
 print("Student is FAIL")

#End of Program

Output:

Enter the marks: 67
Student is PASS

In above example, user entered marks as 67. The first if condition becomes false since marks are
less than 75 so the print statement in block1 is not executed and the control is transferred to elif
condition which become true since the marks lies in the range and the block2 print statement is
executed.

Example 30. Program to salary deduction according to leaves in a month.

leaves = int(input("Enter the number of Leaves: "))

BP = int(input("Enter the Basic Salary: "))
OA= 10000 #Other Allowance

if(leaves < 5):
 sal= BP + OA

Chapter 3 : Programming with Python

55

elif(leaves > 5 and leaves < 20):
 sal= (BP/2) + OA

else:
 sal = 0

print("The Salary of the official for the month is: ",sal)

End of Program

Output:

Enter the number of Leaves: 20
Enter the Basic Salary: 10000
The Salary of the official for the month is: 0

Example 31. Program to Grade allocation according to marks.

marks = int(input("Enter the marks : "))

if (marks>= 90):
 print("Grade A")

elif (marks<90 and marks>=75):
 print("Grade B")

elif (marks <75 and marks >=60):
 print("Grade C")

elif (marks <60 and marks >=50):
 print("Grade D")
else:
 print("Fail")

End of Program

Output:

Enter the marks : 60
Grade C

Chapter 3 : Programming with Python

56

3.1.9 Notion of iterative computation and control flow
We have noticed in flowcharts that some statements or steps are repeated again and again until a
particular condition is achieved. In daily routine activities also we notice that we have to do
continuously the same tasks till the target is achieved or t we obtain the desired result. Such concept
is called iteration or looping where steps are repeated to achieve the set target.
Statements of a program are executed in a sequential manner by default until a condition is being
introduced and flow of program gets modified depending upon the condition. That means based
on the conditions the sequential flow of the program is controlled or decided i.e. flow of control
or control flow of a program depends on the set conditions.

 True

 False

Flowchart for the printing of table of 2 where a set of statements are repeated again and again until
the value of i is greater than 10. We can notice that the flow of program is based on the result of
the condition.

3.1.10 Range function
The range() function returns a sequence of numbers, starting from 0 by default, and increments by
1 (by default), and stops before a specified number.
Syntax:
range(start, stop, step)

3.1.11 while STATEMENT
 The while loop is used to repeat a set of statements until a condition is reached. The syntax for
the while loop is:
 while (condition):
 block of statements
Condition is an expression whose result will be either ‘true’ or ‘false’. The block of statements
will be executed till the condition remains ‘true’ and when the condition becomes ‘false’ loop
terminates.

i <=10
T = 2 * i

i =i +1

Display T

Chapter 3 : Programming with Python

57

Example 32. Program to explain the working of while statement.

Print table of 2
i=1
while(i<=10):
 T= 2*i
 print("2 *",i," = ",T)
 i=i+1
#End of Program
Output:
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10
2 * 6 = 12
2 * 7 = 14
2 * 8 = 16
2 * 9 = 18
2 * 10 = 20

In above program, value of loop index ‘i’ in this case is tested and statements attached to the
while loop are executed till the value of i remains less than equal to 10 i.e. till condition remains
‘true’. When the value of ‘i’ becomes greater than 10 the loop terminates and program ends.
while loop is an entry controlled loop i.e. entry into the loop for executing the statements are
allowed only when entry condition is true.

3.1.12 for STATEMENT

for statement is another way in Python for iteration or looping through which a set of statements
are repeatedly executed till the condition remains ‘true’.
Syntax of for statement is:
 for <variable> in [sequence]:
 block of statements
In the case of for loop the variable i.e. loop index takes the value of the elements present in a list
one by one and executes the statements attached with the loop till the last element and loop
terminates after completing the process for the last element in the list.

Chapter 3 : Programming with Python

58

Example 33. Program to explain the working of for statement.

#Program to explain the working of for statement.
for i in [5,7,9,11]:
 print("The value in the sequence is: ",i)
#End of Program
Output:
The value in the sequence is: 5
The value in the sequence is: 7
The value in the sequence is: 9
The value in the sequence is: 11

In the above example, the loop index ‘i’ took the value of the elements present in the list one by
one in sequence and the statement attached to the for loop are executed number of times equal to
the number of elements present in the list. In above case, since the number of elements in the list
are four i.e. 5, 7, 9, and 11. So the statement attached is executed four times.

Example 34. Program to explain the working of for statement.

for i in ['cat','dog','horse','lion','tiger']:
 print("Hello World")
#End of Program

Output:
Hello World
Hello World
Hello World
Hello World
Hello World

In this case, loop index ‘i’ will take values of the elements of list which are string values and the
statement attached with the loop is executed 5 times since the number of elements in the list are 5.
With this example, it is clear that the index value can be either string or integer and loop iteration
depends on the number of elements in the list.

Chapter 3 : Programming with Python

59

Example 35. Program to explain the working of for statement using range () function.

for i in range (5):
 print ("value of i: ", i)
#End of Program
Output:
value of i: 0
value of i: 1
value of i: 2
value of i: 3
value of i: 4

Using range(n) function the for loop can be implemented and index variable ‘i’ automatically
initialized by 0 and takes value ranging from 0,1,2,3,4, …, n-1 where n is the upper limit. Index
variable is incremented by 1 till it reached the upper limit decremented by 1. In this case the n is 5
so ‘i’ is initialized to 0 and upper limit is 5 so the loop is executed 5 times for the value 0,1,2,3,4
and same is printed as output.
Example 36. Program to explain the working of for statement using range() function.

for i in range(3,7):
 print("value of i: ", i)
#End of Program
Output:
value of i: 3
value of i: 4
value of i: 5
value of i: 6

In this case, the range(a,n) function takes two parameters, with first value of parameter index
variable ‘i’ is initialized and the second parameter is the upper limit. Index variable is incremented
by 1 till it reach the upper limit decremented by 1. In this example, ‘i’ is initialized to 3 and ‘i’
takes the values from 3,4,5,6 i.e. since 7 is the upper limit and the statements attached with the
loop are executed 4 times.
Example 37. Program to explain the working of for statement using range() function.

for i in range(3,10,2):
 print("value of i: ", i)
#End of Program

Chapter 3 : Programming with Python

60

Output:
value of i: 3
value of i: 5
value of i: 7
value of i: 9

In this case, the range(a,n,b) function takes three parameters, with first value of parameter index
variable ‘i’ of the for loop is initialized, the second parameter is the upper limit and third parameter
is the incremental value. Index variable is incremented by the value ‘b’ till it reach the upper limit
decremented by 1. In this example, ‘i’ is initialized to 3 and ‘i’ takes the values from 3,5,7,9 since
index value ‘i’ is incremented by 2 and the statements attached with the loop are executed 4 times.
Example 38. Program to count numbers from 1 to 5 using while and for statements.

using while statement

i=1
while(i<=5):
 print(i)
 i=i+1

#End of Program
Output :
1
2
3
4
5

using for statement

for i in range(1,6):
 print(i)

#End of Program

Output :
1
2
3
4
5

Example 39. Program to generate multiplication table of the number entered.

using while statement

num = int(input("Enter the number: "))

i=1
while(i<=10):
 T = num *i
 print(num,"*",i,"=",T)
 i=i+1
#End of Program
Output :

Enter the number: 5

using for statement

num = int(input("Enter the number: "))

for i in range(1,11):
 T = num*i
 print(num,"*",i,"=",T)

#End of Program

Output :

Enter the number: 5

Chapter 3 : Programming with Python

61

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50

Example 40. Program to print alphabets of a word.

#using while statement
word = input("Enter the word: ")
i=0

while(i<len(word)):
 print(word[i])
 i=i+1
 #End of Program
Output :

Enter the word: CRICKET
C
R
I
C
K
E
T

#using for statement
word = input("Enter the word ")

for w in word:
 print(w)

#End of Program

Output :

Enter the word: CRICKET
C
R
I
C
K
E
T

 len() is function that returns number of characters in a string

Chapter 3 : Programming with Python

62

Example 41. Write a program to read 5 numbers from keyboard and find their sum.

#using while statement

i=1
total=0

while(i<=5):
 num = int(input("Enter the number: "))
 total= total+num
 i=i+1

print("Sum is : ", total)
#End of Program
Output :

Enter the number: 1
Enter the number: 2
Enter the number: 3
Enter the number: 4
Enter the number: 5
Sum is : 15

#using for statement

total=0

for i in range(5):
 num = int(input("Enter the number: "))
 total= total+num

print("Sum is : ", total)

#End of Program

Output :

Enter the number: 1
Enter the number: 2
Enter the number: 3
Enter the number: 4
Enter the number: 5
Sum is : 15

Example 42. Write a program to display first 10 odd numbers.

#using while statement

i=1
num=1

while(i<=10):
 print(num, end=", ")
 num= num+2
 i=i+1

#End of Program

Output :

1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

#using for statement

num=1

for i in range(1,11):
 print(num, end =", ")
 num= num+2

#End of Program

Output :

1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

Chapter 3 : Programming with Python

63

Example 43. Write a program to check the entered word is a palindrome.

Palindrome is a word that reads the same backwards as forwards, e.g. madam, refer, malayalam.
#using while statement

i=1
num=1

while(i<=10):
 print(num, end=", ")
 num= num+2
 i=i+1

#End of Program

Output :

1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

#using for statement

num=1

for i in range(1,11):
 print(num, end =", ")
 num= num+2

#End of Program

Output :

1, 3, 5, 7, 9, 11, 13, 15, 17, 19,

Example 44. Write a program to print the following format.

*
**

#using while statement

i=0
while(i<5):
 j=0
 while(i>=j):
 print("*",end= "")
 j=j+1
 print()
 i=i+1

#End of Program

#using for statement

for i in range(5):
 for j in range (0,i+1):
 print("*",end="")
 print()

#End of Program

Chapter 3 : Programming with Python

64

3.1.13 break STATEMENT

In general, there arises so many situations when a loop is to be terminated on reaching a
particular external condition and in such state Python break’ statement is used. Thus, the ‘break’
statement is used to come out of the currently running loop upon reaching the desired condition.
Syntax:
 for i in range(1,10):
 condition
 break;

Example 45. Program to explain the working of ‘break’ statement.

#using while statement
i=1
while(i<=10):
 print(i)
 if(i==5):
 break;
 i=i+1
#End of Program
Output :
1
2
3
4
5

#using for statement
for i in range(1,10):
 print(i)
 if(i==5):
 break;

#End of Program

Output :
1
2
3
4
5

In above example, in case ‘break’ statement would have not been written in the program then
counting from 1 to 10 would have been the output. However, due to ‘break’ statement when the
value of i becomes 5 the ‘break’ statement plays its role and terminates loop in between and prints
the counting from 1 to 5 as output and control transfers out of the loop.

Chapter 3 : Programming with Python

65

Example 46. Write a program to check a number is prime number.

#using while statement
num = int(input("Enter a number greater
than 1: = "))
i=2;
flag=0
while(i<=num):
 rem = num%i
 if(rem==0 and i==num):
 flag=1
 else:
 if(rem == 0 and i!= num):
 break
 i=i+1
if(flag==1):
 print("Number is PRIME")
else:
 print("Number is NOT PRIME")

#End of Program

Output :
Enter a number greater than 1: = 7
Number is PRIME

#using for statement
num = int(input("Enter a number greater than
1: = "))
flag=0
for i in range(2,num+1):
 rem= num%i
 if(rem==0 and i==num):
 flag=1
 else:
 if(rem==0 and i != num):
 break
if(flag==1):
 print("Number is PRIME")
else:
 print("Number is NOT PRIME")
#End of Program

Output :
Enter a number greater than 1: = 97
Number is PRIME

Chapter 3 : Programming with Python

66

Example 47. Write a program for reversing a number.

#using while statement

num = int(input("enter a number = "))

rev_num=0

while(num>0):
 rem = num%10
 rev_num = rev_num *10 + rem
 num = int(num/10)

print("Reverse number is :", rev_num)

#End of Program

Output :

enter a number = 123456
Reverse number is : 654321

#using for statement

num = int(input("enter a number = "))
rev_num=0

for i in range (1,num):
 rem = num%10
 rev_num = rev_num *10 + rem
 num = int(num/10)
 if(num<=0):
 break

#End of Program

Output :

enter a number = 123456
Reverse number is : 654321

3.1.14 Continue STATEMENT

In case of the Python continue statement next iteration of the loop takes place while ignoring the
statements after the continue statement i.e. continue statement makes the control jumps back at
the start of the loop for iterating again according the set condition for the entry into the loop.
Syntax:

Continue

Chapter 3 : Programming with Python

67

Example 48. Explaining the working of the continue statement.

#using while statement

i=0;
sub='Python'

while(i<len(sub)):
 if(sub[i]== 'o' or sub[i]=='y'):
 i=i+1
 continue
 print(sub[i])
 i=i+1

print("End of Program")
#End of Program

Output :

P
t
h
n
End of Program

#using for statement

for i in 'Python':
 if i=='o' or i=='y':
 continue
 print(i)

print("End of Program")

#End of Program

Output :

P
t
h
n
End of Program

In above example, it can be seen that when the alphabets ‘o’ and ‘y’ occurs in ‘Python’ the if
statement becomes true and the continue statement is executed due to which statement of ‘print’ is
not executed or ignored and control is being transferred back to start of the loop. Thus, alphabet ‘o’
and ‘y’ is not printed in output.

Chapter 3 : Programming with Python

68

Example 49. Write a program to enter the marks of five subjects of a student and if the
marks in any subject is less than 50 don’t print the marks.

#using while statement

i=1

while(i<=5):
 print("Enter the marks of the subject-",i)
 marks=int(input())
 if(marks<50):
 i=i+1
 continue

 print("Marks = ",marks)
 i=i+1

#End of Program

Output :

Enter the marks of the subject- 1
33
Enter the marks of the subject- 2
22
Enter the marks of the subject- 3
11
Enter the marks of the subject- 4
56
Marks = 56
Enter the marks of the subject- 5
78
Marks = 78

#using for statement

for i in range (1,6):
 print("Enter the marks of the subject-",i)
 marks=int(input())
 if(marks<50):
 continue

 print("Marks = ",marks)
#End of Program

Output :

Enter the marks of the subject- 1
33
Enter the marks of the subject- 2
22
Enter the marks of the subject- 3
11
Enter the marks of the subject- 4
56
Marks = 56
Enter the marks of the subject- 5
78
Marks = 78

3.1.15 pass STATEMENT

Python pass statement is used when a condition is required to make the code complete but the
statements attached with it are not required to be executed.
Syntax:
If(condition):
 pass

Chapter 3 : Programming with Python

69

Example 50. Write a program to if the marks entered is greater than 50 then display

‘Great’ and if marks are less than 50 then display ‘Do Hard work’.

marks = int(input("Enter the marks: "))
if(marks>50):
 print("Great")
elif(marks==50):
 pass
 #Yet to decide
else:
 print("Do Hard work")
Output :
Enter the marks: 50

In above example, user gave input marks as 50 since pass statement is attached with that
condition and no code is written in this block so nothing appears in the output.

3.1.15.1 assert STATEMENT

In Python assert statement is used to check the whether a condition or a logical expression is true

or false. The assert statement is very useful in tracking the errors and terminating the program
on occurrence of an error.
Syntax:
assert (condtion)

Example 51. Write a program for explaining working of assert statement.

password = input("Enter the password : ")
assert password == 'PYTHON'
print("Number Entered : ", password)
Output :
Enter the password : Python
Traceback (most recent call last):
 File "C:\Training\CABA-MDTP COURSE MATERIAL\Book Programs.py", line 6, in
<module>
 assert password == 'PYTHON'
AssertionError

In above example, in case the user enters any other password than ‘PYTHON’ the error message
occurs and program is not executed further.

Chapter 3 : Programming with Python

70

Exercises

Multiple Choice Questions

1) What are the features of Python?
a. Open Source
b. Portable
c. Have extensive library
d. All of the above

2) Comments in Python starts with the character:
a. %
b. &
c. *
d. #

3) Multiline comments in Python starts with:
a. {
b.]
c. ‘‘‘
d. ^

4) Which of the following is True in case of compiler?
a. Compiler converts bits i.e. 0’s and 1’s into High level language
b. Compiler translates source code into machine language.
c. Compiler translates low level language to high level language
d. None of the above

5) Python is an interpreted language because:
a. Python programs are first compiled then executed
b. Python program needs no compilation and executed directly
c. Python programs need not to be converted into machine language.
d. None of the above.

6) Which of the following is not numeric literal?
a. “123”
b. 125.25
c. 123
d. None of the above

7) Which of the following a string literal?
a. “abc’
b. “Python”
c. ‘Python”
d. None of the above

8) What will be value of A and B in the given expression:

A = (2+3) * 2 + 6
B = (6/2) + 3 * 2

a. A = 16, B = 12
b. A = 40, B = 12
c. A = 16, B = 9
d. None of the above

Chapter 3 : Programming with Python

71

9) What will be value of A and B in the given expression:

A = 10/2
B = 10%2

a. A = 0, B =0
b. A =5, B = 5
c. A= 0, B =5
d. A=5, B=0

10) What will be the output of the following expression?

A = 8 >> 1
B = 7 << 1

a. A = 4, B = 14
b. A = 3, B = 4
c. A = 5, B = 7
d. A = 9, B = 12

State whether statement is true or false

1) Python is object-oriented language. (T/F)
2) Python is a compiled language. (T/F)
3) The arithmetic operator ‘%’ also called as modulus operator returns remainder in integer

division. (T/F)
4) The logical operator and returns False when both the expressions are True. (T/F)
5) The not operator is used to reverse the output of an expression. (T/F)
6) Looping is defined as block of instructions repeated till the desired condition is achieved.

(T/F)
7) while statement is an entry controlled loop. (T/F)
8) Using break statement programmer can come out of loop even if the condition is True.

(T/F)
9) In Python else statement is optional. (T/F)
10) not logical operator has the highest precedence. (T/F)

Fill in the blanks

1) The __________ statement is used for decision making.
2) ______________statement is used to come out of the loop.
3) _____________ statement is used to check the logical expressions.
4) _____________ bitwise operator returns 1 if any of the corresponding bits is 1.
5) ______________ relational operator is used to represent not equal to.
6) The output of the expression 3 and 4 is __________.
7) ____________ allows sections of code to be executed repeatedly under some condition.
8) String is a sequence of _________.
9) The _____ statement is an empty statement in Python.
10) Operator _____ when used with two strings, gives a concatenated string.

Chapter 3 : Programming with Python

72

Lab Excercises

1) Write a program to calculate the multiplication and sum of two numbers.
2) Write a program to display characters from a string that are present at an even index

number.
3) Write a program to generate the following output using for and while statement.

1
12
123
1234
12345

4) Write a program to generate the following output using for and while statement.

1
22
333
4444
55555

5) Write a program to generate the following output using for and while statement.

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

6) Write a program to display first ten prime numbers using for and while statement.
7) Write a program to find factorial of number using for and while statement.
8) Write a program to count the total number of digits in a number using for and while

statement.
9) Write a program to display Fibonacci series up to 10 terms
10) Write a program to calculate the cube of all numbers from 1 to a given number

Chapter 4 : String Handling and Sequence Types

73

Chapter 4

String Handling and Sequence Types

4.1 String Handling
A string is a series of characters. In Python, anything inside quotes is a string. And you can use
either single or double quotes. It is just like an array in C language and they are stored and
accessed using index.
4.1.1. Creating a string

Strings can be created by enclosing characters inside a single quote or double-quotes i.e
my_string1 = “SCHOOL”
my_string2 = ‘SCHOOL’
In Python by any of the above ways strings can be created.
However, using both single and double quotes simultaneously for creating a string will not work
and will generate error.

String Figure 1: Creating a String.

4.1.2. String indexing

In programming languages, individual items in an ordered set of data can be accessed
directly using a numeric index or key value. This process is referred to as indexing.
In Python, strings are ordered sequences of character data, and thus can be indexed in this way.
Individual characters in a string can be accessed by specifying the string name followed by a
number in square brackets ([]).

Chapter 4 : String Handling and Sequence Types

74

String indexing in Python is zero-based: the first character in the string has index 0, the next has
index 1, and so on. The index of the last character will be the length of the string minus one.
For example, a schematic diagram of the indices of the string 'SCHOOL' would look like this:

S C H O O L

0 1 2 3 4 5

String Example 1: String Indexing

The individual characters can be accessed by index as follows:

String Figure 2: String Indexing

In case a situation arise where we like to access the last element of a string and we are not aware
of the length of the string then in such case negative indexing is used as follows:

Chapter 4 : String Handling and Sequence Types

75

String Figure 3: Negative Indexing

In above example with using negative index we are able to access the last element and second last
element easily without requiring any knowledge of length of the string. Negative indexing is as
under:

S C H O O L

-6 -5 -4 -3 -2 -1
String Example 2: Negative Indexing

4.1.3. string slicing

Concept of slicing is about obtaining a sub-string or a part from the given string by slicing
it respectively from start to end. The concept is slicing is similar to take a bread slice from a bread
packet. In the slicing operation the desired part of the string is obtained using the indexes of the
string.

my_string C O M P U T E R
Positive Index 0 1 2 3 4 5 6 7

Negative Index -8 -7 -6 -5 -4 -3 -2 -1
String Example 3: String Slicing Positive and Negative Index

Chapter 4 : String Handling and Sequence Types

76

String Figure 4: String Slicing positive and negative

The following points are to be noticed:
arr[start:stop]

arr[start:]

arr[:stop]

arr[:]

arr[start:stop:step]

items start through stop-1

items start through the rest of the array

items from the beginning through stop-1

a copy of the whole array

start through not past stop, by step

Table 3: Slicing points to be noticed.

4.1.4. traversing a string

Traversing means to fetch or access each character of string. So traversing a string can be achieved
either one by one as explained in Figure 4.2 or using a loop. Using a loop string can be traversed
as below:

Chapter 4 : String Handling and Sequence Types

77

String Figure 5: Traversing a string

4.1.5. Concatenation of string

The ‘+’ operator works differently with string and perform concatenation means it joins two or
more strings to form a single string. For example:
This operation is valid and final_string variable will hold “MiddleSchool”. Let us understand with
the program as under:

my_string1 = “Middle”
my_string2 = “School”
final_string = my_string1 + my_string2

String Example 4: Concatenation of String

String Figure 6: Concatenation of String

Chapter 4 : String Handling and Sequence Types

78

We can combine more than two strings which are explained with the program as under :

String Figure 7: can combine more than two strings

4.1.6. Other operations on strings

4.1.6.1 Replication (*) operator

There may be times when you need to use Python to automate tasks, and one way you may

do this is through repeating a string several times. You can do so with the ‘*’ operator.

Like the ‘+’ operator, , where it is the operator for multiplication. When used with one

string and one integer, ‘*’ is the string replication operator, repeating a single string

however many times you would like through the integer you provide.

Let’s print out “COMPUTER” 5 times without typing out “COMPUTER” 5 times with
the ‘*’ operator:

String Figure 8: Replication Operator in strings

Chapter 4 : String Handling and Sequence Types

79

4.1.6.2 Membership Operator (in)

This operator confirms the presence of a character in a given string and is used as under :

String Figure 9: Membership Operator (in)

4.1.6.3 Comparison Operators

 To compare two strings, we mean that we want to identify whether the two strings are equivalent
to each other or not, or perhaps which string should be greater or smaller than the other.
This is done using the following operators:
‘==’ This checks whether two strings are equal

‘!=’ This checks if two strings are not equal

‘<’ This checks if the string on its left is smaller than that on its right

‘<=’ This checks if the string on its left is smaller than or equal to that on its right

‘>’ This checks if the string on its left is greater than that on its right

‘>=’ This checks if the string on its left is greater than or equal to that on its right

Table 4: Comparison Operators

Comparison of strings is performed character by character comparison rules for ASCII and
Unicode. ASCII values of numbers 0 to 9 are from 48 to 57, uppercase (A to Z) are from 65 to 90,
and lowercase (a to z) are from 97 to 122.

Chapter 4 : String Handling and Sequence Types

80

The comparison operators working with strings is explained as under:

String Figure 10: Comparison operators working with Strings

4.1.7 accepting input from console

Console (also called Shell) is basically a command line interpreter that takes input from
the user i.e one command at a time and interprets it. If it is error free then it runs the command and
gives required output otherwise shows the error message. Python console is like:

String Figure 11: Accepting Input from console

Here we write command and to execute the command just press enter key and your
command will be interpreted. For coding in Python you must know the basics of the console used
in Python. The primary prompt of the python console is the three greater than symbols “>>>”

Chapter 4 : String Handling and Sequence Types

81

You are free to write the next command on the shell only when after executing the first
command these prompts have appeared. The Python Console accepts command in Python which
you write after the prompt.
User enters the values in the Console and that value is then used in the program as it was required.
To take input from the user we make use of a built-in function input().

String Figure 12: Input from user using build-in function input()

4.1.8 print statements

Python print() function prints the message to the screen or any other standard output device.
Syntax:

print(value(s) , sep= ' ', end = '\n')
Parameters:
value(s) Any value, and as many as you like. Will be converted to string

before printed
sep=’separator’ (Optional) Specify how to separate the objects, if there is more than

one.Default :’ ‘
end=’end’ (Optional) Specify what to print at the end. Default : ‘\n’
Return Type It returns output to the screen

Table 5: Print statement parameters

Though it is not necessary to pass arguments in the print() function, it requires an empty
parenthesis at the end that tells python to execute the function rather calling it by name. Now, let’s
explore the optional arguments that can be used with the print() function.

Chapter 4 : String Handling and Sequence Types

82

String Figure 13: Print() Function

4.1.9 simple programs on strings

4.1.9.1 Write a program to find length of a string.

PROGRAM TO FIND LENGTH OF A STRING

my_string = "We are going to learn Python"

count =0

for i in my_string:

 count = count+1

print("length of string is : ", count)

Output:

length of string is : 28

String Example 5: program to find length of a string

Chapter 4 : String Handling and Sequence Types

83

4.1.9.2 Write a program to confirm presence of a character in string.

PROGRAM TO CONFIRM PRESENCE OF A CHARACTER IN STRING.

my_string = input("Enter the string: ")
my_char = input("Enter the character to confirm: ")
flag = my_char in my_string
print(flag)
Output:
Enter the string: COMPUTER
Enter the character to confirm: E
True

String Example 6: confirm presence of a character in string

4.2 Sequence Data Types

4.2.1. list

In simple language, a list is a collection of things, enclosed in [] and separated by commas. Lists
are used to store multiple items in a single variable.
Creation of list

 Lists are created using square brackets:

PROGRAM TO CREATE A LIST

My_list = ["apple", "banana", "cherry"]
print(My_list)
Output:
['apple', 'banana', 'cherry']

Sequence Example 1: Creation of list

4.2.2. tuple

A tuple in Python is similar to a list. The difference between the two is that we cannot change the
elements of a tuple once it is assigned whereas we can change the elements of a list. Tuples are
also used to store multiple items in a single variable.
Creating a Tuple

A tuple is created by placing all the items (elements) inside parentheses (), separated by commas.
The parentheses are optional, however, it is a good practice to use them.
A tuple can have any number of items and they may be of different types (integer, float, list, etc.).
Tuple is created using parenthesis () as explained below:

Chapter 4 : String Handling and Sequence Types

84

PROGRAM TO CREATE DIFFERENT TYPES OF

TUPLES

Empty tuple
my_tuple = ()
print(my_tuple)
Tuple having integers
my_tuple = (10, 100, 1000)
print(my_tuple)
tuple with mixed datatypes
my_tuple = (1, "SCHOOL", 3.4)
print(my_tuple)
nested tuple
my_tuple = ("COMPUTER", [20, 100, 6], (1, 10, 3))
print(my_tuple)

Output:
()
(10, 100, 1000)
(1, 'SCHOOL', 3.4)
('COMPUTER', [20, 100, 6], (1, 10, 3))

Sequence Example 2: Create Different types of tuple

4.2.3. Dictionary

Python dictionary is an unordered collection of items. Each item of a dictionary has
a key/value pair.
Creating a dictionary

Creating a dictionary is as simple as placing items inside curly braces {} separated by commas.
An item has a key and a corresponding value that is expressed as a pair (key: value).While the
values can be of any data type and can repeat, keys must be of immutable type (with immutable
elements) and must be unique.

Chapter 4 : String Handling and Sequence Types

85

PROGRAM TO CREATE DIFFERENT TYPES OF
DICTIONARIES

empty dictionary
my_dict = {}
print(my_dict)
dictionary with integer keys
my_dict = {1: 'male', 2: 'female'}
print(my_dict)
dictionary with mixed keys
my_dict = {'name': 'Amit', 1: [100, 200, 3]}
print(my_dict)
using dict()
my_dict = dict({1:'glass', 2:'bat'})
print(my_dict)
from sequence having each item as a pair
my_dict = dict([(1,'a'), (2,'b')])
print(my_dict)

Output:
{}
{1: 'male', 2: 'female'}
{'name': 'Amit', 1: [100, 200, 3]}
{1: 'glass', 2: 'bat'}
{1: 'a', 2: 'b'}

Sequence Example 3: Different types of Dictionaries

4.2.4. Indexing and accessing elements of lists, tuples and dictionaries

Accessing elements of Lists

We can use the index operator [] to access an item in a list. In Python, indices start at 0. So, a list
having 5 elements will have an index from 0 to 4.
Trying to access indexes other than these will raise an IndexError. The index must be an integer.
We can't use float or other types, this will result in TypeError.
Nested lists are accessed using nested indexing.

Chapter 4 : String Handling and Sequence Types

86

PROGRAM TO ACCESS ELEMENTS OF

LIST

my_list = ['a', 'b', 'c', 'd', 'e']
first item
print(my_list[0])
third item
print(my_list[2])
fifth item
print(my_list[4])
Nested List
n_list = ["Python", [2, 10, 11, 25]]
Nested indexing
print(n_list[0][1])
print(n_list[1][3])
Using Negative Indexing
print(my_list[-1]) # Last Element
print(my_list[-5]) # 5th Element
Error! Only integer can be used for indexing
print(my_list[4.0])

Output:
a
c
e
y
25
e
a
Traceback (most recent call last):
 File "C:\Training\CABA-MDTP
COURSE MATERIAL\Book
Programs.py", line 24, in <module>
 print(my_list[4.0])
TypeError: list indices must be integers or
slices, not float

Sequence Example 4: Program to access elements of list

Accessing elements of Tuples

We can use the index operator [] to access an item in a tuple, where the index starts from
0.So, a tuple having 6 elements will have indices from 0 to 5. Trying to access an index outside of
the tuple index range(6,7,... in this example) will raise an IndexError.
The index must be an integer, so we cannot use float or other types. This will result
in TypeError.Likewise, nested tuples are accessed using nested indexing, as shown in the example
below.

Chapter 4 : String Handling and Sequence Types

87

PROGRAM TO ACCESS
ELEMENTS OF TUPLE

Different types of tuples
Empty tuple
my_tuple = ()
print(my_tuple)
Tuple having integers
my_tuple = (100, 200, 300)
print(my_tuple)
tuple with mixed datatypes
my_tuple = (1, "PYTHON", 5.4)
print(my_tuple)
nested tuple
my_tuple = ("COMPUTER", [80, 40,

60], (10, 20, 30))
print(my_tuple)
my_tuple = ('A', 'B', 'C', 'D', 'E', 'F')
#Using Negative Indexing
print(my_tuple[-1])
print(my_tuple[-6]

Output:
()
(100, 200, 300)
(1, 'PYTHON', 5.4)
('COMPUTER', [80, 40, 60], (10,

20, 30))
F
A

Sequence Example 5: Access Elements of Tuple

Accessing elements of Dictionaries

While indexing is used with other data types to access values, a dictionary uses keys. Keys
can be used either inside square brackets [] or with the get() method.
 If we use the square brackets [], KeyError is raised in case a key is not found in the dictionary.
On the other hand, the get() method returns None if the key is not found.

my_list = [1, 2, 7, 4, 5]
print(my_list[2:])

Output:
[7, 4, 5]

Chapter 4 : String Handling and Sequence Types

88

PROGRAM TO ACCESS ELEMENTS OF
DICTIONARIES

Different types of dictionary
get vs [] for retrieving elements
my_dict = {'name': 'Tushar', 'age': 36}
print(my_dict['name'])
print(my_dict.get('age'))
Trying to access keys which doesn't exist
throws error
Output None
print(my_dict.get('school'))
KeyError
print(my_dict['school'])

Output:
Tushar
36
None
Traceback (most recent call last):
 File "C:\Training\CABA-MDTP
COURSE MATERIAL\Book
Programs.py", line 15, in <module>
 print(my_dict['school'])
KeyError: 'school'

Sequence Example 6: Accessing elements of Dictionaries

4.2.5. slicing in list, tuple

Concept of slicing is same as of string slicing and is implemented as also in the similar manner.
Slicing in List

The format for list slicing is [start:stop:step].

a. start is the index of the list where slicing starts.

b. stop is the index of the list where slicing ends.

c. step allows you to select nth item within the range start to stop.

my_list = [1, 2, 5, 4, 5]
print(my_list[:])

Output:
[1, 2, 5, 4, 5]

Sequence Example 7: Get all the items in a list.

Sequence Example 8: To get all the items after a specific position

my_list = [1, 3, 7, 4, 5]
print(my_list[:2])

Output:
[1, 3]

Sequence Example 9: get all the items before a specific position

Chapter 4 : String Handling and Sequence Types

89

my_list = [1, 2, 7, 4, 5]
print(my_list[2:4])

Output:
[7, 4]

Sequence Example 10: get all the items from one position to another position

my_list = [0, 2, 7, 4, 5]
print(my_list[::2])

Output:
[0, 7, 5]

Sequence Example 11: Get the Items at Specified Intervals

Slicing in Tuple

Accessing tuple elements using slicing
my_tuple = ('c','o','m','p','u','t','e','r',’s’)
('p','r','o','g','r','a','m','i','z')
elements 2nd to 4th
print(my_tuple[1:4])

elements beginning to 2nd
print(my_tuple[:-7])

elements 8th to end
print(my_tuple[7:])
elements beginning to end
print(my_tuple[:])

Output:
('o', 'm', 'p')
('c', 'o')
('r', 's')
('c', 'o', 'm', 'p', 'u', 't', 'e', 'r', 's')

Sequence Example 12: Slicing in Tuple with code.

4.2.6. Concatenation on list, tuple and dictionary

Concatenation of List.

Two separate list can be combined or joined using ‘+’ operation.
list_1 = [5, 'c']
list_2 = [3, 9, 8]
list_joined = list_1 + list_2
print(list_joined)

Output:
[5, 'c', 3, 9, 8]

Sequence Example 13: Concatenation of list

Chapter 4 : String Handling and Sequence Types

90

Two list can be combined using set () and list() functions so that the final list contains only the
unique value.

list_1 = [5, 'P']
list_2 = [5,8,0,3]
list_joined = list(set(list_1 +
list_2))
print(list_joined)

Output:
[0, 3, 5, 8, 'P']

Sequence Example 14: Concatenation of two lists using set()

In above example, the set () selects the unique values and list () converts the set into list.We can
concatenate a list to another list or simply merge two lists using extend() function.

list_1 = [5, 'a']
list_2 = [7, 5, 5]
list_2.extend(list_1)
print(list_2)

Output:
[7, 5, 5, 5, 'a']

Sequence Example 15: Concatenation of two lists using extend()

Concatenation of Tuple.

Concatenation of two separate tuples can be done using ‘+’ operation.Concatenation of two
tuples.
my_tuple_1 = (22, 14, 0, 67, 98, 11)
my_tuple_2 = (11, 96, 0,1, 23, 44)
print("The first tuple is: ")
print(my_tuple_1)
print("The second tuple is: ")
print(my_tuple_2)
my_result = my_tuple_1 + my_tuple_2
print("The tuple after concatenation is: ")
print(my_result)
(22, 14, 0, 67, 98, 11, 11, 96, 0, 1, 23, 44)

Output:
The first tuple is:
(22, 14, 0, 67, 98, 11)
The second tuple is:
(11, 96, 0, 1, 23, 44)
The tuple after concatenation is:

Sequence Example 16: Concatenation of two tuples.

Concatenation of Dictionary.

Concatenation of two separate dictionaries can be done using ‘|’ operation.Concatenation of
dictionaries using ‘|’ operator:

dict_1 = {5: 't', 7: 'y'}
dict_2 = {5: 'r', 6: 'd'}
print(dict_1 | dict_2)

Output:
{5: 'r', 7: 'y', 6: 'd'}

Sequence Example 17: Concatenation of dictionaries using ‘|’ operator

Chapter 4 : String Handling and Sequence Types

91

4.2.7. Concept of mutability

Mutable Definition

Mutable is when something is changeable or has the ability to change. In Python, ‘mutable’ is the
ability of objects to change their values. These are often the objects that store a collection of data.
Immutable Definition

Immutable is the when no change is possible over time. In Python, if the value of an object cannot
be changed over time, then it is known as immutable. Once created, the value of these objects is
permanent.
List of Mutable and Immutable objects
Objects of built-in type that are mutable are:

 Lists

 Sets

 Dictionaries

 User-Defined Classes (It purely depends upon the user to define the characteristics)

Objects of built-in type that are immutable are:
 Numbers (Integer, Rational, Float, Decimal, Complex & Booleans)

 Strings

 Tuples

 Frozen Sets

 User-Defined Classes (It purely depends upon the user to define the characteristics)

Objects in Python

In Python, everything is treated as an object. Every object has these three attributes:

 Identity – This refers to the address that the object refers to in the computer’s memory.

 Type – This refers to the kind of object that is created. For example- integer, list, string

etc.

 Value – This refers to the value stored by the object. For example – List=[1,2,3] would

hold the numbers 1,2 and 3

Identity and Type cannot be changed once it’s created, values can be changed for Mutable objects.
Explanation of mutable objects using List.
Lists are mutable, meaning their elements can be changed unlike We can use the assignment
operator = to change an item or a range of items.

Chapter 4 : String Handling and Sequence Types

92

odd = [1, 3, 5, 11]
change the 1st item
odd[0] = 1
print(odd)
change 2nd to 4th items
odd[1:4] = [13, 17, 19]
print(odd)

Output:
[1, 3, 5, 11]
[1, 13, 17, 19]

Example 11: mutable objects using List

Explanation of mutable objects using Dictionary.
Dictionaries are mutable. We can add new items or change the value of existing items using an
assignment operator.
If the key is already present, then the existing value gets updated. In case the key is not present, a
new (key: value) pair is added to the dictionary.
Changing and adding Dictionary Elements
my_dict = {'name': 'Tushar', 'age': 29}
update value
my_dict['age'] = 30
print(my_dict)
add item
my_dict['address'] = 'Sarojini Nagar'
print(my_dict)

Output:
{'name': 'Tushar', 'age': 30}
{'name': 'Tushar', 'age': 30, 'address':
'Sarojini Nagar'}

Example 12: mutable objects using Dictionary

Explanation of immutable objects using String and Tuple.
Strings and Tuple both are immutable object means once they are created their elements values
can’t be changed.
Changing tuple values
my_tuple = (5, 7, 10, 9)
my_tuple[2]=100
print(my_tuple)

Output:
Traceback (most recent call last):
 File "<string>", line 3, in <module>
TypeError: 'tuple' object does not support
item assignment

Example 13: Explanation of immutable objects using Tuple.

Changing a string value
my_string = "PYTHON"
my_string[1]='K'
print(my_string)

Output:
Traceback (most recent call last):
 File "<string>", line 3, in <module>
TypeError: 'str' object does not support item
assignment

Example 14: Explanation of immutable objects using String

Chapter 4 : String Handling and Sequence Types

93

However, we can also assign a tuple or string to different values (reassignment).
Other operations on list, tuple and dictionary

Adding item to a list using the append() method

The * operator repeats a list for the given number of times.
list_1 = [5, 'a']
print(list_1*3)

Output:
[5, 'a', 5, 'a', 5, 'a']

Example 16: repeat a list for the given number of times

Inserting one item at a desired location by using the method insert()
list1 = [1, 9, 10, 11]
list1.insert(3,23) #inserting 23 at 3rd
location
print(list1)

Output:
[1, 9, 10, 23, 11]

Example 17: Inserting one item at a desired location

Delete operation on List
Deleting list items
my_list = ['c', 'o', 'm', 'p', 'u', 't', 'e', 'r']
delete one item
del my_list[2]
print(my_list)
delete multiple items
del my_list[1:5]
print(my_list)
delete the entire list
del my_list
Error: List not defined
print(my_list)

Output:
['c', 'o', 'p', 'u', 't', 'e', 'r']
['c', 'e', 'r']
Traceback (most recent call last):
 File "<string>", line 18, in <module>
NameError: name 'my_list' is not defined

Example 18: Delete operation on List

list_1 = [5, 'a']
list_1.append(10)
print(list_1)

Output:
[5, 'a', 10]

Example 15: Adding item to a list using the append()

Chapter 4 : String Handling and Sequence Types

94

Usage of pop() , remove() and clear() method on List.
my_list = ['c', 'o', 'm', 'p', 'u', 't', 'e', 'r']
my_list.remove('p') # Delete a particular
item
print(my_list)
print(my_list.pop(1)) # Delete item at index
[1]
print(my_list)
print(my_list.pop()) # Delete last item of the
list
print(my_list)
my_list.clear() # Delete complete list
print(my_list)

Output:
['c', 'o', 'm', 'u', 't', 'e', 'r']
o
['c', 'm', 'u', 't', 'e', 'r']
r
['c', 'm', 'u', 't', 'e']
[]

Example 19: Usage of pop() , remove() and clear() method on List

Changing and Adding Dictionary elements
If the key is already present, then the existing value gets updated. In case the key is not present, a
new (key: value) pair is added to the dictionary.

Changing and adding Dictionary Elements
my_dict = {'name': 'Kapil', 'age': 39}
update value
my_dict['age'] = 27
print(my_dict)
add item
my_dict['address'] = 'Delhi'
print(my_dict)

Output:
{'name': 'Kapil', 'age': 27}
{'name': 'Kapil', 'age': 27, 'address': 'Delhi'}

Example 20: Changing and Adding Dictionary elements

Removing elements from Dictionary
Removing elements from a dictionary
create a dictionary
cubes = {1: 1, 2: 6, 3: 27, 4: 64, 5: 125}
remove a particular item, returns its value
print(cubes.pop(4))
print(cubes)

Output:
64
{1: 1, 2: 6, 3: 27, 5: 125}
(5, 125)
{1: 1, 2: 6, 3: 27}
{}
Traceback (most recent call last):

Chapter 4 : String Handling and Sequence Types

95

remove an arbitrary item, return
(key,value)
print(cubes.popitem())
print(cubes)

remove all items
cubes.clear()

Output: {}
print(cubes)
delete the dictionary itself
del cubes
Throws Error
print(cubes)

 File "<string>", line 22, in <module>
NameError: name 'cubes' is not defined

Example 21: Removing elements from Dictionary

Finding Minimum and Maximum in List and Tuple.

Maximum and Minimum in a List
even = [2,4,6,8,10]
print(max(even))
print(min(even))
print(" End of Operation on List ")
Maximum and Minimum in a Tuple
odd = (1,3,5,7,9)
print(max(odd))
print(min(odd))
print("End of Operation on Tuple ")

Output:
10
2
 End of Operation on List
9
1
 End of Operation on Tuple

Example 22: Finding Minimum and Maximum in List and Tuple

Finding Mean in List and Tuple.

import statistics
Mean of a List
even = [2,4,6,8,10]
print(statistics.mean(even))
print(" End of Operation on List ")

Output:
10
2
 End of Operation on List
9

Chapter 4 : String Handling and Sequence Types

96

Mean of a Tuple
odd = (1,3,5,7,9)
print(statistics.mean(odd))
print(" End of Operation on Tuple ")

1
 End of Operation on Tuple

Example 23: Finding Mean in List and Tuple

Linear search on list of numbers.

Linear Search on List
num= int(input("Enter the number to search:
"))
even = [2,4,6,8,10]
flag=0
for i in even:
 if(i==num):
 flag=1
 break
if(flag==1):
 print("Entered Number is Present")
else:
 print("Entered Number is not Present")

Output:
Enter the number to search: 10
Entered Number is Present

Example 24: Linear search on list of numbers

Counting the frequency of elements in a list using a dictionary.
my_list =[2, 2, 2, 1, 1, 3, 2, 3, 3, 1, 7, 7, 7, 2, 2, 2, 2]
print(my_list)
print()
freq = {}# Creating an empty dictionary
for item in my_list:
 if (item in freq):
 freq[item] += 1
 else:
 freq[item] = 1
for key, value in freq.items():
 print ("% d : % d"%(key, value))

Output:
[2, 2, 2, 1, 1, 3, 2, 3, 3, 1, 7, 7, 7, 2, 2, 2, 2]

 2 : 8
 1 : 3
 3 : 3
 7 : 3

Example 25: Counting the frequency of elements in a list using a dictionary

Chapter 4 : String Handling and Sequence Types

97

Exercises
Multiple Choice Questions

1)A string is series of _______

a. characters
b. integers
c. double
d. float

2)String index starts from :

a. 1
b. 0
c. -1
d. None of the above

3)Slicing in string is used to extract :

a. part of the string
b. complete string
c. used to empty string
d. None of the above

4)In negative indexing the last character of a string can be accessed using index value

a. Length of string
b. 0
c. -1
d. None of the above

5)Which of the following are sequence data type:

a. List

b. Tuple

c. Dictionary

d. All of the above

6)Which is the Replication operator for string

a. ‘+’

b. ‘-’

c. ‘=’

d. ‘*’

Chapter 4 : String Handling and Sequence Types

98

7)Membership operator ‘in’ confirms :

a. Duplicate elements

b. Presence of an element

c. Absence of an element

d. None of the above

8)Elements in a List are enclosed in which type of bracket:

a. []

b. ()

c. {}

d. Any of the above

9)pop() function is used to :

a. add an item

b. delete an item

c. merge items

d. None of the above

10)Concatenation operator is :

a. ‘+’

b. ‘-’

c. ‘&’

d. ‘%’

State whether statement is true or false

1)Integer values can’t be stored as strings. (T/F)

2)Indexing of string is done manually by the programmer. (T/F)

3)We can use positive and negative indexing to access string elements. (T/F)

4)Comparison operators cannot be used for comparing strings. (T/F)

5)Lists are mutable. (T/F)

6)Tuple are mutable. (T/F)

Chapter 4 : String Handling and Sequence Types

99

7)Dictionaries are mutable. (T/F)

8)insert () function is used add an element at desired location in a List. (T/F)

9)In dictionary elements are stored as key:value pair. (T/F)

10)Membership operator is not available in dictionaries. (T/F)

Fill in the blanks

1. A string can be traversed using an ________.
2. A string can be accessed using positive and _______ index.
3. A ______ function is used to add element in a List at last location.
4. Concatenation of two Dictionaries can be done using ____ operator.
5. ______ function is used to delete complete elements in a list.
6. Elements in a dictionary are stored as key and ____ pair.
7. The method of extracting part of tuple is called _________.
8. To display the message on monitor _____ function is used.
9. __________ function is used to take input from console.
10. To check two strings are equal _____ operator is used.

LAB exercises

1. Write a program to display index value against each character in string.
2. Write a program to maximize frequency in a string..
3. Write a program to split / join string
4. Write a program to find length of list.
5. Write a program for reversing a list.
6. Write a program for finding largest and smallest number in a list.
7. Write a program to print all odd numbers in tuple.
8. Write a program to join two tuples if there fist element is same.
9. Write a program to explain min(), max() and mean() functions using List.
10. Write a program to explain mutability using List, Tuple and Dictionary.

Chapter 5 : Functions

100

Chapter 5

Functions
5.1 Top-down Approach of Problem Solving
Top down analysis is a problem solving mechanism whereby a given problem is successively
broken down into smaller and smaller sub-problems or operations until a set of easily solvable (by
computer) sub-problems is arrived at.
Using the top-down approach. It is possible to achieve a very detailed breakdown, however, it
should be remembered that our aim is to identify easily solvable sub-problems.
 The top-down approach is used in the system analysis and design process.
The top-down approach, starting at the general levels to gain an understanding of the system and
gradually moving down to levels of greater detail is done in the analysis stage. In the process of
moving from top to bottom, each component is exploded into more and more details.
Thus, the problem at hand is analysed or broken down into major components, each of which is
again broken down if necessary.
 The top-down process involves working from the most general down to the most specific.

The design of modules is reflected in hierarchy charts such as the one shown in Figure below:

The purpose of procedure Main is to coordinate the three branch operations e.g. Get, Process, and
Put routines. These three routines communicate only through Main. Similarly, Sub1 and Sub2 can
communicate only through the Process routine.
Advantages of Top-down Approach

The advantages of the top-down approach are as follows:
This approach allows a programmer to remain “on top of” a problem and view the developing
solution in context. The solution always proceeds from the highest level downwards.
By dividing the problem into a number of sub-problems, it is easier to share problem development.
For example, one person may solve one part of the problem and the other person may solve another
part of the problem.

Chapter 5 : Functions

101

Since debugging time grows quickly when the program is longer, it will be to our advantage to
debug a long program divided into a number of smaller segments or parts rather than one big
chunk. The top-down development process specifies a solution in terms of a group of smaller,
individual subtasks. These subtasks thus become the ideal units of the program for testing and
debugging.

5.2 Modular Programming and Functions

5.2.1. Modular Programming

Modular programming is defined as a software design technique that focuses on separating the
program functionality into independent, interchangeable methods/modules. Each of them contains
everything needed to execute only one aspect of functionality.
Talking of modularity in terms of files and repositories, modularity can be on different levels -

 Libraries in projects
 Function in the files

Files in the libraries or repositories
Modularity is all about making blocks, and each block is made with the help of other blocks. Every
block in itself is solid and testable and can be stacked together to create an entire application.
Therefore, thinking about the concept of modularity is also like building the whole architecture of
the application.
Examples of modular programming languages - All the object-oriented programming languages
like C++, Java, etc., are modular programming languages.
5.2.2. Module

A module is defined as a part of a software program that contains one or more routines. When we
merge one or more modules, it makes up a program. Whenever a product is built on an enterprise
level, it is a built-in module, and each module performs different operations and business. Modules
are implemented in the program through interfaces. The introduction of modularity allowed
programmers to reuse prewritten code with new applications. Modules are created and merged
with compilers, in which each module performs a business or routine operation within the program.
For example – SAP (System, Applications, and Products) comprises large modules like finance,
payroll, supply chain, etc. In terms of softwares example of a module is Microsoft Word which
uses Microsoft paint to help users create drawings and paintings.
5.2.3. Advantages of Modular Design

 Rather than focusing on the entire problem at hand, a module typically focuses on one
relatively small portion of the problem.

 Since module is small, it is simpler to understand it as a unit of code. It is therefore easier
to test and debug, especially if its purpose is clearly defined and documented.

 Program maintenance becomes much easier because the modules that are likely to be
affected are quickly identified.

 In a very large project, several programmers may be working on a single problem. Using a
modular approach, each programmer can be given a specific set of modules to work on.
This enables the whole project to be completed faster.

Chapter 5 : Functions

102

 More experienced programmers can be given a more complex module to write, and the
junior programmers can work on simpler modules. Modules can be tested independently,
thereby shortening the time taken to get the whole project working.

 If a programmer leaves a project, it is easier for someone else to take over a set of self-
contained modules.

 A large project becomes easier to monitor as well as to control.

5.3 Function and function parameters
A function is an isolated block of code that performs a specific task.
Functions are useful in programming because they eliminate needless and excessive copying and
pasting of code in a program. If a certain action is required often and in different places, that is a
good indicator that you can write a function for it. Functions are meant to be reusable.
Functions also help organize your code. If you need to make a change, you'll only need to update
that certain function. This saves you from having to search for different pieces of the same code
that have been scattered in different locations in your program by copying and pasting.
This complies with the DRY (Don't Repeat Yourself) principle in software development. The code
inside a function runs only when they the function is called. Functions can accept arguments and
defaults and may or not return values back to the caller once the code has run.
5.3.1. HOW to Define a Function in Python

The general syntax for creating a function in Python looks something like this:

Let's break down what's happening here:

 def is a keyword that tells Python a new function is being defined.
 Next comes a valid function name of your choosing. Valid names start with a letter or

underscore but can include numbers. Words are lowercase and separated by underscores.
It's important to know that function names can't be a Python reserved keyword.

 Then we have a set of opening and closing parentheses, (). Inside them, there can be zero,
one, or more optional comma separated parameters with their optional default values.
These are passed to the function.

 Next is a colon, (:), which ends the function's definition line.
 Then there's a new line followed by a level of indentation (you can do this with 4 spaces

using your keyboard or with 1 Tab instead). Indentation is important since it lets Python
know what code will belong in the function.

 Then we have the function's body. Here goes the code to be executed – the contents with
the actions to be taken when the function is called.

 Finally, there's an optional return statement in the function's body, passing back a value to
the caller when the function is exited.

Keep in mind that if you forget the parentheses () or the colon (:) when trying to define a new
function, Python will let you know with a Syntax Error.

def
function_name(parameters):
 function body

Syntax 1: Define a Function

Chapter 5 : Functions

103

5.3.2. How to Define and Call a Basic Function in Python

Below is an example of a basic function that has no return statement and doesn't take in any
parameters.

5.3.3. It just prints hello world whenever it is called.

Once you've defined a function, the code will not run on its own. To execute the code inside the
function, you have make a function invocation or else a function call.
You can then call the function as many times as you want. To call a function you need to do this:

Here's a breakdown of the code:

 Type the function name.

 The function name has to be followed by parentheses. If there are any required
arguments, they have to be passed in the parentheses. If the function doesn't take in any
arguments, you still need the parentheses.

To call the function from the example above, which doesn't take in any arguments, do the
following.

5.3.4. How to Define and Call Functions with Parameters

So far you've seen simple functions that don't really do much besides printing something to the
console. What if you want to pass in some extra data to the function? We've used terms here
like parameter and arguments. What are their definitions exactly?

def hello_to_you(name):

print("Hello " + name)

def hello_world_func():
 print("hello world")

Function_name(arguments)

hello_world_func()

#Output

#hello world

Code 1: defining a function

Code 1:defining a function

Code 2: Calling a function

Code 3: Defining Functions with parameters

Chapter 5 : Functions

104

Parameters are a named placeholder that pass information into functions. They act as variables
that are defined locally in the function's definition line.

In the example above, there is one parameter, name.We can pass more than one parameters in the
function as shown below :

The function can be called many times, passing in different values each time.

5.4 Local Variables
Python local variable plays an important role in the entire python programming language as it is
used for any scope definition and manipulation. A local variable in Python is always declared
within a specific scope like it is mostly present within any function’s body where other members
can access it. Therefore, it is very difficult and rare that local variables will be present outside the
scope or outside the function. If a variable is present outside the scope, it is considered a global
variable, and all the members become unreachable to a local variable.
5.4.1. Syntax of Local Variable in Python

The syntax flow for the local variable declaration in function for Python includes the following
representation:

def hello_to_you(name):

 print(f"Hello {name}")

hello_to_you("Timmy")

#Output

Hello Timmy

def hello_to_you(name):
 print(f"Hello {name}")
 hello_to_you("Timmy")
hello_to_you("Kristy")
hello_to_you("Jackie")
hello_to_you("Liv")

#Output:

#"Hello Timmy"

#"Hello Kristy"

#"Hello Jackie"

#"Hello Liv"

Function_declaration ():
Variable= “var_assign”
Logic statement ()
Function_declaration () //calling of the function

Code 4: Calling function with parameter

Code 5: Function can be called many times

Syntax 2: Declaration of the Local Variable

Chapter 5 : Functions

105

def dinner_prep():
 dine = 'Pizza_with_extra_topping'
 print('Please have a pizza with extra_topping', dine)
dinner_prep()

Output

Please have a pizza with extra_topping Pizza_with_extra_topping

A function is declared, and then the variable is taken, which creates the memory, and on top of it,
a variable is assigned, which makes it a local variable after which the function is called and then
the following logic statement is called to perform a lot of manipulation and work.
5.4.2 How Local Variable Works in python?
This program demonstrates the local variable when defined within the function where the variable
is declared within function and then a statement followed by the function calling as shown in the
output below.
A local variable in Python plays a significant role in the sense it helps in making the function and
the code snippet access to other member variables with manipulation simple and easy. In addition,
local variables help in making the entire workflow with the global variable compatible and less
complex. Also, the nested functions or statements play a very nice blend with local variables.
5.5 The Return Statement

A return statement is used to end the execution of the function call and “returns” the result (value
of the expression following the return keyword) to the caller. The statements after the return
statements are not executed. If the return statement is without any expression, then the special
value None is returned. A return statement is overall used to invoke a function so that the passed
statements can be executed.
Note: Return statement can not be used outside the function.

defun():
 statements
 return [expression]

Syntax 3: The return statement

5.6 Default argument values

Function arguments can have default values in Python. We can provide a default value to an
argument by using the assignment operator (=). Here is an example.

Python program to
demonstrate return statement
 def add(a, b):
 return a + b

print(add(5,7))
Output
12

Code 6: Python Program to Demonstrate Return statement

Example 26: Working of Local Variable in Python

Chapter 5 : Functions

106

def greet(name, msg="Greeting of Day!"):
 """
 This function greets to
 the person with the
 provided message.

 If the message is not provided,
 it defaults to "Greeting of Day!"
 """
 print("Hello", name + ', ' + msg)

greet("Rajesh")
greet("Kapil", "How do you do?")

Output:
Hello Rajesh, Greeting of Day!
Hello Kapil, How do you do?

Example 27: Example to explain default arguments value.

In this function, the parameter name does not have a default value and is required (mandatory)
during a call.
On the other hand, the parameter msg has a default value of " Greeting of Day!". So, it is optional
during a call. If a value is provided, it will overwrite the default value.
Any number of arguments in a function can have a default value. But once we have a default
argument, all the arguments to its right must also have default values.
5.7 keyword arguments

When we call a function with some values, these values get assigned to the arguments according
to their position.
For example, in the above function greet(), when we called it as greet("Kapil", "How do you do?"),
the value "Kapil" gets assigned to the argument name and similarly "How do you do?" to msg.
Python allows functions to be called using keyword arguments. When we call functions in this
way, the order (position) of the arguments can be changed. Following calls to the above function are
all valid and produce the same result.

def greet(name, msg="Greeting of Day!"):
 """
 This function greets to
 the person with the
 provided message.

 If the message is not provided,
 it defaults to "Greeting of Day!"
 """
 print("Hello", name + ', ' + msg)
greet("Rajesh")
greet("Kapil", "How do you do?")

Output:
Hello Rajesh, Greeting of Day!
Hello Kapil, How do you do?

Example 28: Example to explain default arguments value.

Chapter 5 : Functions

107

5.8 VArArgs parameters.

Python has *args which allow us to pass the variable number of non keyword arguments to
function.
In the function, we should use an asterisk * before the parameter name to pass variable length
arguments. The arguments are passed as a tuple and these passed arguments make tuple inside the
function with same name as the parameter excluding asterisk *.

def adder(*num):
 sum = 0

 for n in num:
 sum = sum + n
 print("Sum:",sum)
adder(3,5)
adder(4,5,6,7)
adder(1,2,3,5,6)

Output:
Sum: 8
Sum: 22
Sum: 17

Example 29:Example to explain VarArgs parameters.

5.9 Library function:

A library is a collection of modules or functions in a python that allows doing specific tasks to
fulfill user’s needs.

5.9.1. input()

The input() function reads a line from the input (usually from the user), converts the line into a
string by removing the trailing newline, and returns it.
If EOF is read, it raises an EOFError exception.
inputString = input() # get input from user

print('The inputted string is:', inputString)

Output:
Yes we are learning
The inputted string is: Yes we are
learning

Example 30:Example to explain input()

inputString = input('Enter a string:')
print('The inputted string is:', inputString)

Output:
Enter a string:Yes we are learning
The inputted string is: Yes we are
learning

Example 31:input() with a message .

Chapter 5 : Functions

108

5.9.2. eval()
The eval() method parses the expression passed to this method and runs python expression
(code) within the program.

number = 10
eval performs the multiplication passed as argument
square_number = eval('number * number')
print(square_number)

Output:
100

Example 32: Explanation eval() function

Perimeter of Square
def calculatePerimeter(l):
 return 4*l

Area of Square
def calculateArea(l):
 return l*l

expression = input("Type a function: ")

for l in range(1, 5):
 if (expression == 'calculatePerimeter(l)'):
 print("If length is ", l, ", Perimeter = ",
eval(expression))
 elif (expression == 'calculateArea(l)'):
 print("If length is ", l, ", Area = ", eval(expression))
 else:
 print('Wrong Function')
 break

Output:
Type a function: calculateArea(l)
If length is 1 , Area = 1
If length is 2 , Area = 4
If length is 3 , Area = 9
If length is 4 , Area = 16

Example 33: Explanation eval() function using code

5.9.3. print() function
The print() function prints the given object to the standard output device (screen) or to the text stream file.
message = 'We are Learning Python'
print the string message
print(message)

Output:
We are Learning Python

Example 34: Explanation of print() function.

Chapter 5 : Functions

109

5.9.4. print() Parameters

 objects - object to the printed. * indicates that there may be more than one object

 sep - objects are separated by sep. Default value: ' '

 end - end is printed at last

 file - must be an object with write(string) method. If omitted, sys.stdout will be used which

prints objects on the screen.

 flush - If True, the stream is forcibly flushed. Default value: False

print("Computer")
a = 10
Two objects are passed
print("a =", a)
b = a
Three objects are passed
print('a =', a, '= b')

Output:
Computer
a = 10
a = 10 = b

Example 35: explanation of print()

a = 10
print("a =", a, sep='******', end='\n\n\n')
print("a =", a, sep='+++++', end='\n\n\n')

Output:
a =******10

a =+++++10

Example 36: print() with separator and end parameters

5.9.5 String Functions:

Count function()

The count() method returns the number of occurrences of a substring in the given string.
message = 'Computer programming'
number of occurrence of 'p'
print('Number of occurrence of p:',
message.count('p'))

OUTPUT:
Number of occurrence of p: 2

Example 37: Explanation of count() function.

Chapter 5 : Functions

110

Syntax of String count

 The syntax of count() method is:

string.count(substring, start=..., end=...)
Syntax 4: Syntax of string count

count() Parameters : count() method only requires a single parameter for execution. However, it
also has two optional parameters:

 substring - string whose count is to be found.

 start (Optional) - starting index within the string where search starts.

 end (Optional) - ending index within the string where search ends.

Note: Index in Python starts from 0, not 1. count() method returns the number of occurrences of
the substring in the given string.
 find() function

The find() method returns the index of first occurrence of the substring (if found). If not found, it returns -1.

find() Syntax:

str.find(sub[, start[, end]])
Syntax 5: The syntax of the find() method

find() Parameters
The find() method takes maximum of three parameters:
 sub - It is the substring to be searched in the str string.

 start and end (optional) - The range str[start:end] within which substring is searched.

 find() Return Value

The find() method returns an integer value:
 If the substring exists inside the string, it returns the index of the first occurence of the

substring.

 If a substring doesn't exist inside the string, it returns -1.

message = 'Computer Programming is good'

check the index of 'good'

print(message.find('good'))

Output:

24

Example 38: Explanation of find() function.

Chapter 5 : Functions

111

5.9.6 rfind() function

The rfind() method returns the highest index of the substring (if found). If not found, it returns -
1.
The syntax of rfind() is:

str.rfind(sub[, start[, end]])
Syntax 6: The Syntax of rfind() method.

rfind() Parameters
rfind() method takes a maximum of three parameters:

 sub - It's the substring to be searched in the str string.
 start and end (optional) - substring is searched within str[start:end]

Return Value from rfind()
rfind() method returns an integer value.

 If substring exists inside the string, it returns the highest index where substring is found.

 If substring doesn't exist inside the string, it returns -1.

quote = 'This is what, This is what, This is what'
result = quote.rfind('This is what')
print("Substring 'This is what':", result)
result = quote.rfind('Big')
print("Substring 'Big ':", result)

Output:
Substring 'This is what': 28
Substring 'Big ': -1

Example 39: Explanation of rfind() function.

Various string functions capitalize(), title(), lower(), upper() and swapcase():-

 The capitalize() method converts the first character of a string to an uppercase letter and

all other alphabets to lowercase.

 The islower() method returns True if all alphabets in a string are lowercase alphabets. If

the string contains at least one uppercase alphabet, it returns False.

 The upper() method converts all lowercase characters in a string into uppercase characters

and returns it.

 The title() method returns a string with first letter of each word capitalized; a title cased

string.

Chapter 5 : Functions

112

 The swapcase() method returns the string by converting all the characters to their opposite

letter case(uppercase to lowercase and vice versa).

my_string = "computer programming is GOOD"
print(my_string.capitalize()) # Computer
programming is good
print(my_string.title()) # Computer Programming Is
Good
print(my_string.lower()) #computer programming is
good
print(my_string.upper()) # COMPUTER
PROGRAMMING IS GOOD
print(my_string.swapcase()) # COMPUTER
PROGRAMMING IS good

Output:
Computer programming is good
Computer Programming Is Good
computer programming is good
COMPUTER PROGRAMMING
IS GOOD
COMPUTER PROGRAMMING
IS good

Example 40: Various string functions capitalize(), title(), lower(), upper() and swapcase()

Various string functions islower(), isupper() and istitle():-

 The islower() method returns True if all alphabets in a string are lowercase alphabets. If

the string contains at least one uppercase alphabet, it returns False.

 The upper() method converts all lowercase characters in a string into uppercase characters

and returns it.

 The istitle() returns True if the string is a titlecased string. If not, it returns False.

 my_string1 = "computer programming"

 my_string2 ="COMPUTER"

 my_string3= "Computer"

 print("---Check String1---")

 print(my_string1.islower())

 print(my_string1.isupper())

 print(my_string1.istitle())

 print("---Check String2---")

 print(my_string2.islower())

 print(my_string2.isupper())

 print(my_string2.istitle())

Chapter 5 : Functions

113

 print("---Check String3---")

 print(my_string3.islower())

 print(my_string3.isupper())

 print(my_string3.istitle())

 Output:

 Computer programming is good

 ---Check String1---

 True

 False

 False

 ---Check String2---

 False

 True

 False

 ---Check String3---

 False

 False

 True

Example 41: Various string functions islower(), isupper() and istitle().

Replace() and strip() function:-

The replace() method replaces each matching occurrence of the old character/text in the string
with the new character/text.

text = 'Cricket Football'
replace c with b
replaced_text = text.replace('b', 'c')
print(replaced_text)

Output:
Cricket Footcall

Example 42: Explanation for replace() function usage.

The strip() method returns a copy of the string by removing both the leading and the trailing
characters (based on the string argument passed).
message = ' This is Python '
remove leading and trailing whitespaces
print('Message:', message.strip())

Output:
Message: This is Python

Example 43: Explanation for strip() function usage.

Chapter 5 : Functions

114

numeric Functions:
The min() function returns the smallest item in an iterable. It can also be used to find the smallest
item between two or more parameters.
The max() function returns the largest item in an iterable. It can also be used to find the largest
item between two or more parameters.

number = [10, 20, 8, 5, 100, 600]
largest_number = max(number);
print("The largest number is:", largest_number)
smallest_number = min(number)
print("The smallest number is:",
smallest_number)

Output:
The largest number is: 600
The smallest number is: 5

Example 44: Explanation of min(), max().

The pow() method computes the power of a number by raising the first argument to the second
argument
number = [10, 20, 8, 5, 100, 600]
for i in number:
 print(pow(i,2))

Output:
100
400
64
25
10000
360000

Example 45: Explanation of pow().

5.9.6 Date and time functions

Python has a module named datetime to work with dates and times. Let's create a few simple
programs related to date and time before we dig deeper.

import datetime
datetime_object = datetime.datetime.now()
print(datetime_object)

Output:
2022-09-25 12:03:39.574930

Example 46: Code to get Current Date and Time

import datetime
date_object = datetime.date.today()
print(date_object)

Output:
2022-09-25

Example 47: Code to get Current Date

Chapter 5 : Functions

115

from datetime import date
date object of today's date
today = date.today()
print("Current year:", today.year)
print("Current month:", today.month)
print("Current day:", today.day)

Output:
Current year: 2022
Current month: 9
Current day: 25

Example 48: Code to print todays date, month and year.

5.9.7 recursion

Recursion is the process of defining something in terms of itself.
In Python, we know that a can call other functions. It is even possible for the function to call itself.
These types of construct are termed as recursive functions.
The following image shows the working of a recursive function called recurse.

Figure 3: Recursive Function

Following is an example of a recursive function to find the factorial of an integer.
Factorial of a number is the product of all the integers from 1 to that number. For example, the
factorial of 5(denoted as 5!) is 1*2*3*4*5= 120.
def factorial(x):
 """This is a recursive function
 to find the factorial of an integer"""
 if x == 1:
 return 1
 else:
 return (x * factorial(x-1))
num = 5
print("The factorial of", num, "is",
factorial(num))

Output:
120

Example 49: Code to implement recursive functions.

Chapter 5 : Functions

116

When we call this function with a positive integer, it will recursively call itself by decreasing the
number.
Each function multiplies the number with the factorial of the number below it until it is equal to
one. This recursive call can be explained in the following steps.
factorial(5) # 1st call with 5
5 * factorial(4) # 2nd call with 4
5 * 4 * factorial(3) # 3rd call with 3
5 * 4 * 3 *factorial(2) # 4th call with 2
5 * 4 *3*2* factorial(1) # 5th call with 1
Our recursion ends when the number reduces to 1. This is called the base condition. Every
recursive function must have a base condition that stops the recursion or else the function calls
itself infinitely.
Advantages of Recursion:-

 Recursive functions make the code look clean and elegant.
 A complex task can be broken down into simpler sub-problems using

recursion.
 Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of Recursion:-
 Sometimes the logic behind recursion is hard to follow through.
 Recursive calls are expensive (inefficient) as they take up a lot of memory

and time.
 Recursive functions are hard to debug.

5.9.8 Packages and modules

We don't usually store all of our files on our computer in the same location. We use a well-
organized hierarchy of directories for easier access.
Similar files are kept in the same directory, for example, we may keep all the songs in the "music"
directory. Analogous to this, Python has packages for directories and for files.

As our application program grows larger in size with a lot of modules, we place similar modules
in one package and different modules in different packages. This makes a project (program) easy
to manage and conceptually clear.
Similarly, as a directory can contain subdirectories and files, a Python package can have sub-
packages and modules.
A directory must contain a file named __init__.py in order for Python to consider it as a package.
This file can be left empty but we generally place the initialization code for that package in this
file.
Here is an example. Suppose we are developing a game. One possible organization of packages
and modules could be as shown in the figure below.

Chapter 5 : Functions

117

Figure 4: package Module Structure in Python Programming

Scope of Objects and Names in Python :

Scope refers to the coding region from which a particular Python object is accessible. Hence one
cannot access any particular object from anywhere from the code, the accessing has to be allowed
by the scope of the object.
Let’s take an example to have a detailed understanding of the same:

Python program showing
a scope of object
 def some_func():
 print("Inside some_func")
 def some_inner_func():
 var = 15
 print("Inside inner function, value of
var:",var)
 some_inner_func()
 print("Try printing var from outer function:
",var)
some_func()

Output:
Inside some_func
Inside inner function, value of var: 15
Traceback (most recent call last):
 File "<string>", line 12, in <module>
File "<string>", line 11, in some_func
NameError: name 'var' is not defined

Example 50: Example to explain scope of object.

What is namespace:
A namespace is a system that has a unique name for each and every object in Python. An

object might be a variable or a method. Python itself maintains a namespace in the form of a Python
dictionary. Let’s go through an example, a directory-file system structure in computers. Needless
to say, that one can have multiple directories having a file with the same name inside every
directory. But one can get directed to the file, one wishes, just by specifying the absolute path to
the file. Real-time example, the role of a namespace is like a surname. One might not find a single
“Alice” in the class there might be multiple “Alice” but when you particularly ask for “Alice Lee”
or “Alice Clark” (with a surname), there will be only one (time being don’t think of both first name
and surname are same for multiple students)

Chapter 5 : Functions

118

On similar lines, the Python interpreter understands what exact method or variable one is
trying to point to in the code, depending upon the namespace. So, the division of the word itself
gives a little more information. Its Name (which means name, a unique identifier) + Space(which
talks something related to scope). Here, a name might be of any Python method or variable and
space depends upon the location from where is trying to access a variable or a method.

 Types of namespaces :
When Python interpreter runs solely without any user-defined modules, methods, classes, etc.
Some functions like print(), id() are always present, these are built-in namespaces. When a user
creates a module, a global namespace gets created, later the creation of local functions creates the
local namespace. The built-in namespace encompasses the global namespace and the global
namespace encompasses the local namespace.

Figure 5: Type of Namespaces

Python program showing
a scope of object
Python program showing
a scope of name
 def some_func():
 var=10 # Outer function variable
 print("Inside some_func")
 def some_inner_func():
 var = 15
 print("Inside inner function, value of
var:",var)
 some_inner_func()
 print("var from outer function: ",var)
some_func()

Output:
Inside some_func
Inside inner function, value of var: 15
var from outer function: 10

Example 51: Code to explain namespace concept.

Chapter 5 : Functions

119

LEGB Rule module basics

Python namespaces can be divided into four types.
 Local Namespace: A function, for-loop, try-except block are some examples of a local

namespace. The local namespace is deleted when the function or the code block finishes
its execution.

 Enclosed Namespace: When a function is defined inside a function, it creates an enclosed
namespace. Its lifecycle is the same as the local namespace.

 Global Namespace: It belongs to the python script or the current module. The global
namespace for a module is created when the module definition is read. Generally, module
namespaces also last until the interpreter quits.

 Built-in Namespace: The built-in namespace is created when the Python interpreter starts
up and it’s never deleted.

Figure 6:Four types of Python namespaces

Importing Module

We can import the definitions inside a module to another module or the interactive interpreter in
Python. We use the import keyword to do this. To import our previously defined
module example, we type the following in the Python prompt.

to import standard module math
import math
print("The value of pi is", math.pi)

Output:
The value of pi is 3.141592653589793

Example 52: Code to explain importing module.

import math as m
print("The value of pi is", m.pi)

Output:
The value of pi is 3.141592653589793

Example 53: Code to explain import with renaming.

Chapter 5 : Functions

120

Reloading a Module

The Python interpreter imports a module only once during a session. This makes things more
efficient. Here is an example to show how this works.
Suppose we have the following code in a module named my_module.

This module shows the effect of
multiple imports and reload
print("This code got executed")

Now we see the effect of multiple imports.
>>> import my_module
This code got executed
>>> import my_module
>>> import my_module

We can see that our code got executed only once. This goes to say that our module was

imported only once. Now if our module changed during the course of the program, we would have
to reload it. One way to do this is to restart the interpreter. But this does not help much.
Python provides a more efficient way of doing this. We can use the reload () function inside
the imp module to reload a module. We can do it in the following ways:

>>> import imp
>>> import my_module
This code got executed
>>> import my_module
>>> imp.reload(my_module)
This code got executed
<module 'my_module' from '.\\my_module.py'>

Chapter 5 : Functions

121

Exercise

 Multiple choice questions
11) In Top-down approach a problem _______

a. Combined to form bigger modules
b. Divided into smaller modules
c. No change done in problem
d. None of the above

12) The keyword that tell Python that a new function is defined :
a. def
b. next
c. import
d. None of the above

13) To pass some extra data to a function ______ is used:
a. import
b. export
c. parameter
d. module

14) A variable with a specific scope is called ______.
a. Local variable
b. Global variable
c. Argument
d. None of the above

15) Function used to take input from the console is ________.
a. print()
b. isupper()
c. istitle()
d. None of the above

16) _________ function used to convert method converts the first character of a string to an
uppercase letter and all other alphabets to lowercase.

a. capitalize()
b. upper()
c. lower()
d. None of the above

17) Using today() function we will bale to know
a. Current day
b. Current month
c. Current year
d. All of the above

Chapter 5 : Functions

122

18) Which of the function helps in finding power of a number:
a. pow()
b. powmin()
c. maxpow()
d. None of the above

19) With the help of which keyword we are able to include modules in our program:
a. Bypass
b. break
c. import
d. None of the above

With the help of reloading module we need not to do ______
e. Shutdown interpreter
f. Shutdown compiler
g. Restart interpreter
h. Restart compiler

State whether statement is true or false

1) Function helps in achieving Top-down approach. (T/F)
2) More than one parameter cannot be accepted by a function. (T/F)
3) Using return statement we are able to return value to a caller function. (T/F)
4) Local variable can be used in a specific block. (T/F)
5) VarArgs parameters are used to pass the variable number of non-keyword arguments to

function. (T/F)
6) input() function used to display message on screen. (T/F)
7) print() function is used to take input from the console. (T/F)
8) Recursive function calls to itself until particular condition is met. (T/F)
9) Reloading a module is an efficient way than restarting an interpreter. (T/F)
10) import doesn’t allow modules include into a program. (T/F)

Fill in the blanks

1) The islower() method returns _____ if all alphabets in a string are lowercase alphabets.
2) The rfind() method returns the ______ index of the substring (if found).
3) A _________ statement is used to end the execution of the function call and “returns” the

result to the caller.
4) The _______ method returns the number of occurrences of a substring in the given string.
5) The _______ method returns a string with first letter of each word capitalized; a title cased

string.

Chapter 5 : Functions

123

6) The ________ method returns the string by converting all the characters to their opposite
letter case (uppercase to lowercase and vice versa).

7) A _________ is a system that has a unique name for each and every object in Python.
8) Recursive functions are ________ to debug.
9) ______ keyword used to include packages or modules to a program.
10) The ________ method replaces each matching occurrence of the old character/text in the

string with the new character/text.

LAB exercise

1) Write a program to find sum of first 10 numbers using function.
2) Write a program to find first 10 prime numbers using function.
3) Write a program to explain the concept of local variable.
4) Write a program to explain return statement.
5) Write a program explain input() and print() function.
6) Write a program to explain the working of eval() function.
7) Write a program to explain the working of min() and max() functions.
8) Write a program to explain count(), find(), replace() functions.
9) Write a program to explain the upper(), lower(), title(), capitalize() functions.
10) Write a program to explain importing of module /package

Chapter 6 : File Processing

124

Chapter 6

File Processing
6.1 Concept of Files

Python too supports file handling and allows users to handle files i.e., to read and write files, along
with many other file handling options, to operate on files. The concept of file handling has
stretched over various other languages, but the implementation is either complicated or lengthy,
but like other concepts of Python, this concept here is also easy and short.

6.2 File opening in various modes and closing of a file

The file can be opened in the following modes:
Mode Description
r Opens a file for reading only. (It's a default mode.)
w Opens a file for writing. (If a file doesn't exist already, then it creates a new file.

Otherwise, it's truncate a file.)
x Opens a file for exclusive creation. (Operation fails if a file does not exist in the

location.)
a Opens a file for appending at the end of the file without truncating it. (Creates a new

file if it does not exist in the location.)
t Opens a file in text mode. (It's a default mode.)
b Opens a file in binary mode.
+ Opens a file for updating (reading and writing.)

Table 6: Various modes for file handling

Syntax:

 file_object = open(“filename” ,”mode”)

Closing a file:
In Python, it is not system critical to close all your files after using them, because the file will auto
close after Python code finishes execution. You can close a file by using the close() method.
 Syntax:
 file_object.close()

6.3 Reading from a file
For reading text data, different text-encoding schemes are used, such as ASCII (American Standard
Code for Information Interchange), UTF-8 (Unicode Transformation Format), UTF-16.

Syntax: file = open("file.txt", "r")

 print (file.read())

Chapter 6 : File Processing

125

6.4 Writing onto a file, File functions - open()

Similarly, for writing data to files, we have to use open() with 'wt' mode, clearing and overwriting
the previous content. Also, we have to use the write() function to write into a file.
Syntax: file = open("file.txt", "wt")
 file.write('hi there, this is a first line of file.\n')
 file.write('and another line\n')
Output:
hi there, this is a first line of file.
and another line.
 The open() function returns a file object which can used to read, write and modify the file.
If the file is not found, it raises the FileNotFoundError exception.
Example 1: How to open a file in Python?
opens test.text file of the current directory
f = open("test.txt")

specifying the full path
f = open("C:/Python33/README.txt")

Since the mode is omitted, the file is opened in 'r' mode; opens for reading.

Example 2: Providing mode to open()
opens the file in reading mode
f = open("path_to_file", mode='r')

opens the file in writing mode
f = open("path_to_file", mode = 'w')

opens for writing to the end
f = open("path_to_file", mode = 'a')

Python's default encoding is ASCII. You can easily change it by passing the encoding parameter.

6.5 close()
Python file method close() closes the opened file. A closed file cannot be read or written any more.
You should always close your files, in some cases, due to buffering, changes made to a file may
not show until you close the file. Python automatically closes a file when the reference object of a
file is reassigned to another file. It is a good practice to use the close() method to close a file.
Syntax:
 f.close()

Chapter 6 : File Processing

126

6.6 read()
The read() method in Python is a pre-defined function which returns the read data in the form of
a string.
Syntax:
 f.read(n)

Where f is the object created while opening a specific file,
and ‘n’ is the number of bytes to be read from the file. In the case where n is not specified,
the read() function reads the whole file.

Figure 7: new_file.txt

Consider the contents to be read belong to the above-shown file, named new_file.txt. Hence
using read() we can read the information present inside new_file. Let us see how we can do that,
file = open("new_file.txt", "r")

print(file.read())

Output:
 Python
 C
 C++
 Java
 Kotlin
Again for reading a specific number of bytes, we can use read() in the following way,
file = open("new_file.txt", "r")

print(file.read(6))

Output:
 Python

6.7 readline()

readline() is yet another pre-defined method in Python, which returns a read line in the form of
a string. Below is the syntax for readline() function,
f.readline(n)

Chapter 6 : File Processing

127

Similarly, here f is the object created while opening the file and ‘n’ is the number of bytes which
the function would read almost. Noteworthy, if n exceeds the length of a line, the function doesn’t
consider the next line.

file = open("new_file.txt", "r")
print(file.readline())

Output:
 Python\n

6.8 readlines()

readlines() reads all the lines present inside a specified file and returns a list containing the string
forms of the read lines.
file.readlines()

Using the readlines() method,
file = open("new_file.txt", "r")
print(file.readlines())

Output:
 ['Python\n', 'C\n', 'C++\n', 'Java\n', 'Kotlin']

6.9 write()

The write() method writes a specified text to the file. Where the specified text will be inserted
depends on the file mode and stream position.

"a": The text will be inserted at the current file stream position, default at the end of the
file.
"w": The file will be emptied before the text will be inserted at the current file stream
position, default 0.

Syntax: f.write(“”)

Example

f = open("new_file.txt", "a")
f.write("\nSee you soon!")
f.close()

#open and read the file after the appending:
f = open("new_file.txt", "r")
print(f.read())

 Code 7: write to a file

Chapter 6 : File Processing

128

Output:
Python
Java
C
C++
Kotlin
See you again!

 Output 1: write a file

6.10 writelines()

The writelines() method writes the items of a list to the file. Where the texts will be inserted
depends on the file mode and stream position.
"a": The texts will be inserted at the current file stream position, default at the end of the
file.
"w": The file will be emptied before the texts will be inserted at the current file stream
position, default 0.

Syntax :f.writelinrs(list)

Example

f = open("new_file.txt", "a")
f.writelines(["\nSee you soon!", "\nOver and out."])
f.close()

#open and read the file after the appending:
f = open("new_file.txt", "r")
print(f.read())

Code 8: writelines

Output:
Python

Java
C
C++
Kotlin
See you again!

Over and out.
Output 2: Writelines

Chapter 6 : File Processing

129

6.11 tell()

The tell() function in Python, used to find the current position of the file handler or file object.
Most of the time, the tell() function becomes useful to check whether the position of the file
handler is at the beginning of the file or not.
Syntax: file.tell()

Example
file = open("myfile.txt", "w")
text = "What's Up!"
file.write(text)
print("The current position of file handler is:", file.tell())
file.close()

Code 9: tell () Function

Output:

The current position of file handler is: 10
Output 3: tell() Function Output

Here are the list of 10 characters of the text written to the file:

1. W
2. h
3. a
4. t
5. '
6. s
7. (a space)
8. U
9. p
10. !

So the current position of file handler is 10.

6.12 seek()
If we want to move the file pointer to another position, we can use the seek() method.

Chapter 6 : File Processing

130

Syntax:

This method takes two arguments:

 file. Seek(offset, from where), where offset represents how many bytes to move
 from where, represents the position from where the bytes are moving.
Example 1
 >>> # test.txt contents:
 >>> # ABCDE
 >>> f = open(r'C:\test.txt')
 >>> f.seek(3)
 >>> f.read() # starts reading from the 3rd character
 'DE'
 Example 2
 >>> f = open(r'C:\test.txt')
 >>> f.seek(2) # move two characters ahead
 >>> f.seek(2, 1) #move two characters ahead from the current pos
 >>> f.read()
 'E'
 Example 3
 >>> f = open(r'C:\test.txt')
 >>> f.seek(-3, 2) # move to the 3rd character from the end of the file
 >>> f.read()

6.13 Command Line arguments

The arguments that are given after the name of the program in the command line shell of
the operating system are known as Command Line Arguments. Python provides various
ways of dealing with these types of arguments. The three most common are:

a) Using sys.argv:
The sys module provides functions and variables used to manipulate different parts of the Python
runtime environment. This module provides access to some variables used or maintained by the
interpreter and to functions that interact strongly with the interpreter.One such variable is sys.argv
which is a simple list structure. Its main purpose is:

 It is a list of command line arguments.
 len(sys.argv) provides the number of command line arguments.
 sys.argv[0] is the name of the current Python script.

Chapter 6 : File Processing

131

Example: Let’s suppose there is a Python script for adding two numbers and the numbers are
passed as command-line arguments.

import sys
total arguments
n = len(sys.argv)
print("Total arguments passed:", n)
Arguments passed
print("\nName of Python script:", sys.argv[0])
print("\nArguments passed:", end = " ")
for i in range(1, n):
print(sys.argv[i], end = " ")
Addition of numbers
Sum = 0
Using argparse module
for i in range(1, n):
Sum += int(sys.argv[i])
print("\n\nResult:", Sum)

Code 10: Using sys.argv

Output:
Name of Python script: gfg.py
Arguments passed: 2 3 5 6
Result: 16

Output 4: Python Output for sys.argv

b) Using getopt module

Python getopt module is similar to the function of C. Unlike sys module getopt module extends
the separation of the input string by parameter validation. It allows both short, and long options
including a value assignment. However, this module requires the use of the sys module to
process input data properly. To use getopt module, it is required to remove the first element from
the list of command-line arguments.

Syntax: getopt.getopt(args, options, [long_options])

Parameters:
args: List of arguments to be passed.
options: String of option letters that the script want to recognize. Options that require an
argument should be followed by a colon (:).

Chapter 6 : File Processing

132

long_options: List of string with the name of long options. Options that require arguments
should be followed by an equal sign (=).
Return Type: Returns value consisting of two elements: the first is a list of (option, value) pairs.
The second is the list of program arguments left after the option list was stripped.

Example:

Output

Output 5: Output for getopt module

Python program to demonstrate
command line argument
import getopt, sys
 # Remove 1st argument from the
list of command line arguments
argumentList = sys.argv[1:]
Options
options = "hmo:"
Long options
long_options = ["Help", "My_file", "Output="]
try:
 # Parsing argument
 arguments, values = getopt.getopt(argumentList, options, long_options)
 # checking each argument
 for currentArgument, currentValue in arguments:
 if currentArgument in ("-h", "--Help"):
 print ("Displaying Help")
 elif currentArgument in ("-m", "--My_file"):
 print ("Displaying file_name:", sys.argv[0])
 elif currentArgument in ("-o", "--Output"):
 print (("Enabling special output mode (% s)") % (currentValue))
except getopt.error as err:
 # output error, and return with an error code
 print (str(err))

Code 11: Code for getopt module

Chapter 6 : File Processing

133

c) Using argparse module:

Using argparse module is a better option than the above two options as it provides a lot of options
such as positional arguments, default value for arguments, help message, specifying data type of
argument etc.

Note: As a default optional argument, it includes -h, along with its long version –help.
 Example 1: Basic use of argparse module.

Python program to demonstrate
command line arguments
import argparse
Initialize parser
parser = argparse.ArgumentParser()
parser.parse_args()

Code 12: Using argparse module.

Output:

Output 6: argparse module

Example 2: Adding description to the help message.

Python program to demonstrate

command line arguments

import argparse

msg = "Adding description"

Initialize parser

parser = argparse.ArgumentParser(description = msg)

parser.parse_args()
Code 13: Using argparse adding description to the help message.

Chapter 6 : File Processing

134

Output:

Output 7: Adding description to the help message using argparse

Example 3: Defining optional value

Output:

Output 8: Defining optional value

Code 14: Defining optional value

Python program to demonstrate
command line arguments
import argparse
Initialize parser
parser = argparse.ArgumentParser()
Adding optional argument
parser.add_argument("-o", "--Output", help = "Show Output")
Read arguments from command line
args = parser.parse_args()
if args.Output:
 print("Displaying Output as: % s" % args.Output)

Chapter 6 : File Processing

135

Exercise

Multiple choice Question

1.To open a file in python language function is used .

a) Begin()
b) Create()
c) Open()
d) File()

2.To read all contents from file object FILE at once we may use
a) FILE.read(*)
b) FILE.readlines()
c) FILE.read()
d) FILE.readline()

3. To read 20 characters from file object FILE at once we may use
a) FILE.read(20)
b) FILE.readlines(20)
c) FILE.read(char=20)
d) FILE.readline(char=20)

4. readlines() will return
a) list of characters
b) list of strings
c) list of lines
d) list of tuples

5. read() will return
a) List
b) String
c) tuple
d) dictionary

6. In file handling , what does this term means "r,a"
a) append append,
b) read read
c) append
d) error

7. Which of the following file mode will refer to the BINARY mode?
a)Binary
b)B
c)Bin
d)W

 8. Which of the following file mode will refer to the writing and reading both BINARY
file?

a) wb
b) wb+
c) w+
d) w

Chapter 6 : File Processing

136

9. Which of the following file mode is not a valid file mode?
a) Rw
b) Ab
c) w+
d) r+
e) ra

10.Which of the following function is used to write LIST OF STRINGS in a file?
a) write()
b) writeline()
c) writelines()
d) write(all)

 11. Which of the following function is used to write GROUP OF CHARACTERS in a file?
a) write()
b) writeChars()
c) writelines()
d) write(all)

12. If we do not specify file mode while opening a file, the file will open inmode
read

a) Write
b) append
c) will give an error

 13. If we want to add more contents in an existing file, file must be opened in............mode
binary

a) append
b) Write
c) it is not possible

14. What is to be added as mode to open file in text mode?
a) Text
b) T
c) t+
d) nothing to specify , by default it will open in text mode

15. To open a file Myfile.txt ,which is stored at d:\Myfolder, for WRITING , we can use
a) F=open("d:\Myfolder\Myfile.txt","w")
b) F=open(file="d:\Myfolder\Myfile.txt","w")
c) F=open("d:\\Myfolder\Myfile.txt","w")
d) F=open("d:\\Myfolder\\Myfile.txt","w")
e) F=open(r"d:\Myfolder\Myfile.txt","w")

Chapter 6 : File Processing

137

SUBJECTIVE TYPE QUESTIONS

1.What do you mean by file? What do you mean by file handling?
2.Does python create itself if the file doesn’t exist in the memory? Illustrate your answer with an
example.

3.List out the basic file modes available in python.
4.Write a python program to create and read the city.txt file in one go and print the contents on
the output screen.
5.Explain open() function with its syntax in detail

6.Write one basic difference between text file and binary file.

7.What is the difference between write and append mode.
8.What is the method used to close the file in python?

9.What is the difference between read() and read(n) function?
10.Write a program to read first 5 charater from a file(“data.txt”)

11.Write a program to read first like from the file(“data.txt”)
12.Name 2 functions which are used to write data into files

13.Write a program to read entire content from the file named(“test.txt”)

14.Which method is used to close a file in python?
15. Another name of file object is?

Chapter 7 : Machine Learning and AI

138

Chapter 7

Machine Learning and AI

Artificial Intelligence (AI) is when a computer algorithm does intelligent work. On the other hand,
Machine Learning is a part of AI that learns from the data that also involves the information
gathered from previous experiences and allows the computer program to change its behavior
accordingly. Artificial Intelligence is the superset of Machine Learning i.e. all Machine
Learning is Artificial Intelligence but not all AI is Machine Learning.

Artificial Intelligence Machine Learning
AI manages more comprehensive issues
of automating a system. This
computerization should be possible by
utilizing any field such as image
processing, cognitive science, neural
systems, machine learning, etc.

Machine Learning (ML) manages to influence
users’ machines to gain from the external
environment. This external environment can be
sensors, electronic segments, external storage
gadgets, and numerous other devices.

AI manages the making of machines,
frameworks, and different gadgets savvy
by enabling them to think and do errands
as all people generally do.

What ML does, depends on the user input or a
query requested by the client, the framework
checks whether it is available in the knowledge
base or not. If it is available, it will restore the
outcome to the user related to that query, however,
if it isn’t stored initially, the machine will take in
the user input and will enhance its knowledge base,
to give a better value to the end-user

 Table 7: Artificial Intelligence vs Machine Learning

Future Scope –
 Artificial Intelligence and Machine Learning are likely to replace the current model of

technology that we see these days, for example, traditional programming packages
like ERP and CRM are certainly losing their charm.

 Firms like Facebook, and Google are investing a hefty amount in AI to get the desired outcome
at a relatively lower computational time.

 Artificial Intelligence is something that is going to redefine the world of software and IT in the
near future.

7.1. Types of Machine Learning Algorithms (supervised, unsupervised)

Based on the methods and way of learning, machine learning is divided into mainly four types,
which are:

1. Supervised Machine Learning

2. Unsupervised Machine Learning

Chapter 7 : Machine Learning and AI

139

3. Semi-Supervised Machine Learning
4. Reinforcement Learning

Figure 8: Types of Machine Learning Algorithms

7.1.1 Supervised Machine Learning
As its name suggests, is based on supervision. It means in the supervised learning

technique, we train the machines using the "labelled" dataset, and based on the training, the
machine predicts the output. Here, the labelled data specifies that some of the inputs are already
mapped to the output. More preciously, we can say; first, we train the machine with the input and
corresponding output, and then we ask the machine to predict the output using the test dataset.
Let's use an illustration to clarify supervised learning. Assume we have a dataset of photos of dogs
and cats as our input. Therefore, we will first train the machine to comprehend the photos, teaching
it things like the size and shape of a dog's tail, the shape of a cat's eyes, their colour, and their
height (dogs are taller than cats, for example). After training, we input a cat image and ask the
computer to recognise the object and forecast the outcome. Now that the machine is educated, it
will examine every characteristic of the thing, including height, form, colour, eyes, ears, tail, and
so on, and determine that it is a cat. As a result, it will be classified as a cat. This is how it works.

Figure 9: Classification of dog vs cat (Supervised Machine Learning)

Chapter 7 : Machine Learning and AI

140

The main goal of the supervised learning technique is to map the input variable(x) with the output
variable(y). Some real-world applications of supervised learning are Risk Assessment, Fraud
Detection, Spam filtering, etc.
Categories of Supervised Machine Learning
Supervised machine learning can be classified into two types of problems, which are given below:

o Classification

o Regression

7.1.2. Unsupervised Machine Learning
Unsupervised learning is distinct from the supervised learning method because, as its name
implies, supervision is not required. In unsupervised machine learning, this means that the system
is trained on an unlabeled dataset and makes output predictions without any human supervision.
In unsupervised learning, the models are trained on data that has neither been classified nor
labelled, and they are then allowed to behave autonomously on that data.
The main objective of the unsupervised learning method is to categorise or group the unsorted
dataset according to similarities, differences, and patterns. The machines are to find the hidden
patterns in the input dataset. To better comprehend it, let's use an example. Suppose we feed the
machine learning model photographs of a basket of fruit. The model has no prior knowledge of
the photos, and its job is to identify patterns and groups of items.
As a result, when the machine is tested with the test dataset, it will now learn its patterns and
distinctions, such as colour differences and form differences, and anticipate the output.

Figure 10: Unsupervised Learning clustering of different fruits

7.1.3 Categories of Unsupervised Machine Learning

Unsupervised Learning can be further classified into two types, which are given below:

o Clustering

o Association

Chapter 7 : Machine Learning and AI

141

7.2. Feature engineering
The act of choosing, modifying, and transforming raw data into features that can be used in
supervised learning is referred to as feature engineering. It could be necessary to develop and train
better features in order to make machine learning effective on new tasks. A "feature," as you may
know, is any quantifiable input that may be used in a predictive model; examples include the
colourof an object's surface or the sound of a person's voice. Simply put, feature engineering is the
technique of employing statistical or machine learning techniques to transform unprocessed
observations into desired features. A machine learning technique called feature engineering uses
data to generate new variables that aren't present in the training set. It can generate fresh features
for supervised and unsupervised learning. generate fresh features for supervised and unsupervised

learning.
Figure 11: Feature Engineering diagram

7.3. Preparing Data

Data preparation may be one of the most difficult steps in any machine learning project. The
reason is that each dataset is different and highly specific to the project. Nevertheless, there are
enough commonalities across predictive modelling projects that we can define a loose
sequence of steps and subtasks that you are likely to perform.

Figure 12: Data Preparation Process

Chapter 7 : Machine Learning and AI

142

7.3.1 Training Data, Test data

 7.3.1.1 What is Training Data?
Algorithms are used in machine learning to extract knowledge from datasets. They identify
patterns, gain insight, make judgments, and assess those judgments.
The datasets are divided into two groups for machine learning.
The first subset, referred to as the training data, is a part of our actual data that is utilized to train
a machine learning model. It trains our model in this way. The testing data refers to the other
subset. Normally, training data is larger than test dataset. This is because we want to provide the
model with as much information as we can in order for it to discover and learn useful patterns.
When our datasets' data are supplied to a machine learning algorithm, the programme recognises
patterns in the data and draws conclusions.

 7.3.1.2 What is Testing Data?
Once your machine learning model is built (with your training data), you need unseen data

to test your model. This data is called testing data, and you can use it to evaluate the performance
and progress of your algorithms’ training and adjust or optimize it for improved results.

Testing data has two main criteria. It should:
 Represent the actual dataset
 Be large enough to generate meaningful predictions

7.3.1.2 Data Validation

Validation data provides an initial check that the model can return useful predictions in a real-
world setting, which training data cannot do. The ML algorithm can assess training data and
validation data at the same time.

Validation data is an entirely separate segment of data, though a data scientist might carve out part
of the training dataset for validation — as long as the datasets are kept separate throughout the
entirety of training and testing.

Figure 13: understanding training, test, and validation data

Chapter 7 : Machine Learning and AI

143

For example, let’s say an ML algorithm is supposed to analyze a picture of a vertebrate and provide
its scientific classification. The training dataset would include lots of pictures of mammals, but
not all pictures of all mammals, let alone all pictures of all vertebrates. So, when the validation
data provides a picture of a squirrel, an animal the model hasn’t seen before, the data scientist can
assess how well the algorithm performs in that task. This is a check against an entirely different
dataset than the one it was trained on.

Figure 14: Understanding Training, Test and Validation data

7.4. Introduction to different Machine Learning Algorithms

 List of commonly used Machine Learning (ML) Algorithms:

1. Linear regression: Linear regression is one of the easiest and most popular Machine
Learning algorithms. It is a statistical method that is used for predictive analysis.
Linear regression makes predictions for continuous/real or numeric variables such
as sales, salary, age, product price, etc.

2. Logistic regression : Logistic regression is one of the most popular Machine Learning
algorithms, which comes under the Supervised Learning technique. It is used for
predicting the categorical dependent variable using a given set of independent
variables.

Chapter 7 : Machine Learning and AI

144

3. Decision tree : Decision Tree is a Supervised learning technique that can be used for
both classification and Regression problems, but mostly it is preferred for solving
Classification problems. It is a tree-structured classifier, where internal nodes
represent the features of a dataset, branches represent the decision rules and each leaf
node represents the outcome.

4. SVM algorithm : Support Vector Machine or SVM is one of the most popular
Supervised Learning algorithms, which is used for Classification as well as Regression
problems. However, primarily, it is used for Classification problems in Machine
Learning.

5. Naive Bayes algorithm : Naïve Bayes algorithm is a supervised learning algorithm,
which is based on Bayes theorem and used for solving classification problems. It is
mainly used in text classification that includes a high-dimensional training dataset.

6. KNN algorithm : K-nearest neighbours (KNN) algorithm is a type of supervised ML
algorithm which can be used for both classification as well as regression predictive
problems. However, it is mainly used for classification predictive problems in industry.

7. K-means : K-means clustering algorithm computes the centroids and iterates until we
it finds optimal centroid. It assumes that the number of clusters are already known. It
is also called flat clustering algorithm. The number of clusters identified from data by
algorithm is represented by ‘K’ in K-means.In this algorithm, the data points are
assigned to a cluster in such a manner that the sum of the squared distance between the
data points and centroid would be minimum. It is to be understood that less variation
within the clusters will lead to more similar data points within same cluster.

7.5. Training the Machine learning model and predicting the results

Problem Statement:
Create the model that can classify the different species of the Iris flower.
Problem solving:

1. create the dataset.
2. Build the model
3. Train the model
4. Make predictions.

Iris Flower:

Iris is the family in the flower which contains the several species such as the iris.setosa,

iris.versicolor, iris.virginica etc.

Figure 15: Iris Flower species

Chapter 7 : Machine Learning and AI

145

1) Create the datasets:
In order to classify the different species of the Iris, We should prepare the datasets

 with features and labels. But sklearn comes with the inbuilt datasets for the iris
 classification problem.

 Let us first understand the datasets
 The data set consists of:

o 150 samples
o 3 labels: species of Iris (Iris setosa, Iris virginica and Iris versicolor)
o 4 features: Sepal length, Sepal width, Petal length, Petal Width in cm

Scikit learn only works if data is stored as numeric data, irrespective of it being a
regression or a classification problem. It also requires the arrays to be stored at
numpy arrays for optimization. Since, this dataset is loaded from scikit learn,
everything is appropriately formatted.

Figure 16: how the data looks like

So now let us write the python code to load the Iris dataset.

from sklearn import datasets
iris=datasets.load_iris()
Assign the data and target to separate variables.
x=iris.data
y=iris.target
x contains the features and y contains the labels
Splitting the dataset:
Since our process involve training and testing, We should split our dataset.It can be executed by the
following code

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.5)
x_train contains the training features
x_test contains the testing features
y_train contains the training label
y_test contains the testing labels

Chapter 7 : Machine Learning and AI

146

2) Build the mode
We can use any classification algorithm to solve the problem.we have solved the previous
problem with decision tree algorithm,I will go with that.

from sklearn import tree
classifier=tree.DecisionTreeClassifier()
The above code will create the empty model. In order to provide the operations to the model
we should train them.

Note:We can also use KNeighborsClassifier(efficiency is higher)

from sklearn import neighbors
classifier=neighbors.KNeighborsClassifier()
At this point,We have just made the model.But it cannot able to predict whether the given flower
belongs to which species of Iris .If our model has to predict the flower,We have to train the model
with the Features and the Labels.

3) Train the Model.
We can train the model with fit function.

classifier.fit(x_train,y_train)
Now the model is ready to make predictions

4) Make predictions:
Predictions can be done with predict function

predictions=classifier.predict(x_test)

these predictions can be matched with the expected output to measure the accuracy value.

from sklearn.metrics import accuracy_score
print(accuracy_score(y_test,predictions))

Chapter 7 : Machine Learning and AI

147

Full code:

from sklearn import datasets

iris=datasets.load_iris()

x=iris.data

y=iris.target

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.5)

from sklearn import tree

classifier=tree.DecisionTreeClassifier()

classifier.fit(x_train,y_train)

predictions=classifier.predict(x_test)

from sklearn.metrics import accuracy_score

print(accuracy_score(y_test,predictions))
Code 15: Code for Iris flower classification using Decision tree classifier

Output:

D:\iris_classification>python classifier.py

0.96
Output 9: Result for iris flower classification

So the accuracy is 96%

Chapter 7 : Machine Learning and AI

148

7.6. Applications of Machine Learning. Introduction to Artificial Intelligence

7.6.1 Applications of Machine Learning.

Machine learning is a buzzword for today's technology, and it is growing very rapidly day-by-day.
We are using machine learning in our daily life even without knowing it such as Google Maps,
Google assistant, Alexa, etc. Below are some most trending real-world applications of Machine
Learning:

Figure 17: Applications of Machine Learning.

1. Image Recognition:

Image recognition is one of the most common applications of machine learning. It is used to
identify objects, persons, places, digital images, etc. The popular use case of image recognition
and face detection is, Automatic friend tagging suggestion:Facebook

Figure 18: Image Recognition

Chapter 7 : Machine Learning and AI

149

2. Speech Recognition:

While using Google, we get an option of "Search by voice," it comes under speech recognition,
and it's a popular application of machine learning.
Speech recognition is a process of converting voice instructions into text, and it is also known as
"Speech to text", or "Computer speech recognition." At present, machine-learning algorithms are
widely used by various applications of speech recognition. Google assistant, Siri, Cortana,
and Alexa are using speech recognition technology to follow the voice instructions.

Figure 19: Speech Recognition

3. Traffic prediction:

If we want to visit a new place, we take help of Google Maps, which shows us the correct path
with the shortest route and predicts the traffic conditions.
It predicts the traffic conditions such as whether traffic is cleared, slow moving, or heavily
congested with the help of two ways:

o Real Time location of the vehicle form Google Map app and sensors

o Average time has taken on past days at the same time.

Everyone who is using Google Map is helping this app to make it better. It takes information from
the user and sends back to its database to improve the performance.

4. Product recommendations:
Machine learning is widely used by various e-commerce and entertainment companies such
as Amazon, Netflix, etc., for product recommendation to the user. Whenever we search for some
product on Amazon, then we started getting an advertisement for the same product while internet
surfing on the same browser and this is because of machine learning. Google understands the user
interest using various machine-learning algorithms and suggests the product as per customer
interest. As similar, when we use Netflix, we find some recommendations for entertainment series,
movies, etc., and this is also done with the help of machine learning.

Chapter 7 : Machine Learning and AI

150

Figure 20: Product recommendations

5. Self-driving cars:

One of the most exciting applications of machine learning is self-driving cars. Machine learning
plays a significant role in self-driving cars. Tesla, the most popular car manufacturing company is
working on self-driving car. It is using unsupervised learning method to train the car models to
detect people and objects while driving.

Figure 21: Self-driving cars

6. Email Spam and Malware Filtering:

Whenever we receive a new email, it is filtered automatically as important, normal, and spam. We
always receive an important mail in our inbox with the important symbol and spam emails in our
spam box, and the technology behind this is Machine learning. Below are some spam filters used
by Gmail:

Chapter 7 : Machine Learning and AI

151

o Content Filter

o Header filter

o General blacklists filter

o Rules-based filters

o Permission filters

Some machine learning algorithms such as Multi-Layer Perceptron, Decision tree, and Naïve
Bayes classifier are used for email spam filtering and malware detection.

7. Virtual Personal Assistant:

We have various virtual personal assistants such as Google assistant, Alexa, Cortana, Siri. As the
name suggests, they help us in finding the information using our voice instruction. These assistants
can help us in various ways just by our voice instructions such as Play music, call someone, open
an email, Scheduling an appointment, etc.
These virtual assistants use machine learning algorithms as an important part. These assistant
record our voice instructions, send it over the server on a cloud, and decode it using ML algorithms
and act accordingly.

8. Online Fraud Detection:

Machine learning is making our online transaction safe and secure by detecting fraud transaction.
Whenever we perform some online transaction, there may be various ways that a fraudulent
transaction can take place such as fake accounts, fake ids, and steal money in the middle of a
transaction. So to detect this, Feed Forward Neural network helps us by checking whether it is a
genuine transaction or a fraud transaction.
For each genuine transaction, the output is converted into some hash values, and these values
become the input for the next round. For each genuine transaction, there is a specific pattern which
gets change for the fraud transaction hence, it detects it and makes our online transactions more
secure.
9. Stock Market trading:

Machine learning is widely used in stock market trading. In the stock market, there is always a risk
of up and downs in shares, so for this machine learning's long short term memory neural network is
used for the prediction of stock market trends.

10. Medical Diagnosis:

In medical science, machine learning is used for diseases diagnoses. With this, medical technology
is growing very fast and able to build 3D models that can predict the exact position of lesions in
the brain.
It helps in finding brain tumors and other brain-related diseases easily.

Chapter 7 : Machine Learning and AI

152

11. Automatic Language Translation:

Nowadays, if we visit a new place and we are not aware of the language then it is not a problem at
all, as for this also machine learning helps us by converting the text into our known languages.
Google's GNMT (Google Neural Machine Translation) provide this feature, which is a Neural
Machine Learning that translates the text into our familiar language, and it called as automatic
translation.
The technology behind the automatic translation is a sequence to sequence learning algorithm,
which is used with image recognition and translates the text from one language to another
language.

7.6.2 Introduction to Artificial Intelligence:

In today's world, technology is growing very fast, and we are getting in touch with different new
technologies day by day.
Here, one of the booming technologies of computer science is Artificial Intelligence which is ready
to create a new revolution in the world by making intelligent machines. The Artificial Intelligence
is now all around us. It is currently working with a variety of subfields, ranging from general to
specific, such as self-driving cars, playing chess, proving theorems, playing music, Painting, etc.AI
is one of the fascinating and universal fields of Computer science which has a great scope in future.
AI holds a tendency to cause a machine to work as a human.

Figure 22: Introduction to Artificial Intelligence

Artificial Intelligence is composed of two words Artificial and Intelligence, where Artificial
defines "man-made," and intelligence defines "thinking power", hence AI means "a man-made

thinking power."

So, we can define AI as:

 "It is a branch of computer science by which we can create intelligent machines which can behave

like a human, think like humans, and able to make decisions."

Chapter 7 : Machine Learning and AI

153

Artificial Intelligence exists when a machine can have human based skills such as learning,
reasoning, and solving problems

With Artificial Intelligence you do not need to pre-program a machine to do some work, despite
that you can create a machine with programmed algorithms which can work with own intelligence,
and that is the awesomeness of AI.

It is believed that AI is not a new technology, and some people says that as per Greek myth, there
were Mechanical men in early days which can work and behave like humans.

Why Artificial Intelligence?

Before Learning about Artificial Intelligence, we should know that what is the importance of AI
and why should we learn it. Following are some main reasons to learn about AI:

 With the help of AI, you can create such software or devices which can solve real-world
problems very easily and with accuracy such as health issues, marketing, traffic issues, etc.

 With the help of AI, you can create your personal virtual Assistant, such as Cortana, Google
Assistant, Siri, etc.

 With the help of AI, you can build such Robots which can work in an environment where
survival of humans can be at risk.

 AI opens a path for other new technologies, new devices, and new Opportunities.

Artificial Intelligence is not just a part of computer science even it's so vast and requires lots of
other factors which can contribute to it. To create the AI first, we should know that how
intelligence is composed, so the Intelligence is an intangible part of our brain which is a
combination of Reasoning, learning, problem-solving perception, language understanding, etc.

To achieve the above factors for a machine or software Artificial Intelligence requires the
following discipline:

o Mathematics

o Biology

o Psychology

o Sociology

o Computer Science

o Neurons Study

o Statistics

Chapter 7 : Machine Learning and AI

154

Figure 23: Factors needed to learn Artificial Intelligence

7.7. Common Applications of AI:

The function and popularity of Artificial Intelligence are soaring by the day. Artificial intelligence
is the ability of a system or a program to think and learn from the experience. AI applications have
significantly evolved over the past few years and has found its applications in almost every
business sector. Top artificial intelligence applications in the real world are:

7.7.1. AI Application in E-Commerce:

 Personalized Shopping
Artificial Intelligence technology is used to create recommendation engines through which
you can engage better with your customers. These recommendations are made in
accordance with their browsing history, preference, and interests. It helps in improving
your relationship with your customers and their loyalty towards your brand.

 AI-powered Assistants
Virtual shopping assistants and chatbots help improve the user experience while shopping
online. Natural Language Processing is used to make the conversation sound as human and
personal as possible. Moreover, these assistants can have real-time engagement with your
customers. Did you know that on amazon.com, soon, customer service could be handled
by chatbots?

7.7.2. Applications of Artificial Intelligence in Education:

Although the education sector is the one most influenced by humans, Artificial Intelligence has
slowly begun to seep its roots in the education sector as well. Even in the education sector, this
slow transition of Artificial Intelligence has helped increase productivity among faculties and
helped them concentrate more on students than office or administration work.

Chapter 7 : Machine Learning and AI

155

Some of these applications in this sector include:

 Administrative Tasks Automated to Aid Educators
Artificial Intelligence can help educators with non-educational tasks like task-related duties
like facilitating and automating personalized messages to students, back-office tasks like
grading paperwork, arranging and facilitating parent and guardian interactions, routine
issue feedback facilitating, managing enrolment, courses, and HR-related topics.

 Creating Smart Content
Digitization of content like video lectures, conferences, and text book guides can be made
using Artificial Intelligence. We can apply different interfaces like animations and learning
content through customization for students from different grades.
Artificial Intelligence helps create a rich learning experience by generating and providing
audio and video summaries and integral lesson plans.

 Voice Assistants
Without even the direct involvement of the lecturer or the teacher, a student can access
extra learning material or assistance through Voice Assistants. Through this, printing costs
of temporary handbooks and also provide answers to very common questions easily.

 Personalized Learning
Using AI technology, hyper-personalization techniques can be used to monitor students’
data thoroughly, and habits, lesson plans, reminders, study guides, flash notes, frequency
or revision, etc., can be easily generated.

7.7.3. Applications of Artificial Intelligence in Lifestyle:

Artificial Intelligence has a lot of influence on our lifestyle. Let us discuss a few of them.

 Autonomous Vehicles
Automobile manufacturing companies like Toyota, Audi, Volvo, and Tesla use machine
learning to train computers to think and evolve like humans when it comes to driving in
any environment and object detection to avoid accidents.

 Spam Filters
The email that we use in our day-to-day lives has AI that filters out spam emails sending
them to spam or trash folders, letting us see the filtered content only. The popular email
provider, Gmail, has managed to reach a filtration capacity of approximately 99.9%.

 Facial Recognition
Our favorite devices like our phones, laptops, and PCs use facial recognition techniques by
using face filters to detect and identify in order to provide secure access. Apart from
personal usage, facial recognition is a widely used Artificial Intelligence application even
in high security-related areas in several industries.

 Recommendation System
Various platforms that we use in our daily lives like e-commerce, entertainment websites,
social media, video sharing platforms, like YouTube, etc., all use the recommendation
system to get user data and provide customized recommendations to users to increase
engagement. This is a very widely used Artificial Intelligence application in almost all
industries.

Chapter 7 : Machine Learning and AI

156

7.7.4. Applications of Artificial intelligence in Navigation:
Based on research from MIT, GPS technology can provide users with accurate, timely, and
detailed information to improve safety. The technology uses a combination of Convolutional
Neural Network and Graph Neural Network, which makes lives easier for users by automatically
detecting the number of lanes and road types behind obstructions on the roads. AI is heavily used
by Uber and many logistics companies to improve operational efficiency, analyze road traffic, and
optimize routes.

7.7.5. Applications of Artificial Intelligence in Robotics:
Robotics is another field where artificial intelligence applications are commonly used. Robots
powered by AI use real-time updates to sense obstacles in its path and pre-plan its journey
instantly.

It can be used for -
 Carrying goods in hospitals, factories, and warehouses
 Cleaning offices and large equipment
 Inventory management

7.7.6 Applications of Artificial Intelligence in Human Resource

Did you know that companies use intelligent software to ease the hiring process?

Artificial Intelligence helps with blind hiring. Using machine learning software, you can examine
applications based on specific parameters. AI drive systems can scan job candidates' profiles, and
resumes to provide recruiters an understanding of the talent pool they must choose from.

7.7.7. Applications of Artificial Intelligence in Healthcare

Artificial Intelligence finds diverse applications in the healthcare sector. AI applications are used
in healthcare to build sophisticated machines that can detect diseases and identify cancer cells.
Artificial Intelligence can help analyze chronic conditions with lab and other medical data to
ensure early diagnosis. AI uses the combination of historical data and medical intelligence for the
discovery of new drugs.

7.7.8. Applications of Artificial Intelligence in Agriculture

Artificial Intelligence is used to identify defects and nutrient deficiencies in the soil. This is done
using computer vision, robotics, and AI can analyze where weeds are growing. AI bots can help
to harvest crops at a higher volume and faster pace than human laborers.

Chapter 7 : Machine Learning and AI

157

7.7.9. Applications of Artificial Intelligence in Gaming

The gaming industry is another area where AI technologies have gained popularity. AI can be
utilised to develop intelligent, human-like NPCs that communicate with players. In order to
improve game design and testing, it can also be used to forecast human behaviour. The 2014 Alien
Isolation video games employ AI to follow the player around at all times. Two artificial
intelligence systems are used in the game: the "Director AI," who frequently knows where you
are, and the "Alien AI," which is controlled by sensors and behaviours and persistently pursues the
player.

7.8. Advantages and Disadvantages of AI

Advantages of Artificial Intelligence

Following are some main advantages of Artificial Intelligence:
 High Accuracy with less errors: AI machines or systems are prone to less errors and high

accuracy as it takes decisions as per pre-experience or information.
 High-Speed: AI systems can be of very high-speed and fast-decision making, because of

that AI systems can beat a chess champion in the Chess game.
 High reliability: AI machines are highly reliable and can perform the same action multiple

times with high accuracy.
 Useful for risky areas: AI machines can be helpful in situations such as defusing a bomb,

exploring the ocean floor, where to employ a human can be risky.
 Digital Assistant: AI can be very useful to provide digital assistant to the users such as AI

technology is currently used by various E-commerce websites to show the products as per
customer requirement.

 Useful as a public utility: AI can be very useful for public utilities such as a self-driving
car which can make our journey safer and hassle-free, facial recognition for security
purpose, Natural language processing to communicate with the human in human-language,
etc.

Disadvantages of Artificial Intelligence

Every technology has some disadvantages, and thesame goes for Artificial intelligence. Being so
advantageous technology still, it has some disadvantages which we need to keep in our mind while
creating an AI system. Following are the disadvantages of AI:

 High Cost: The hardware and software requirement of AI is very costly as it requires lots
of maintenance to meet current world requirements.

 Can't think out of the box: Even we are making smarter machines with AI, but still they
cannot work out of the box, as the robot will only do that work for which they are trained,
or programmed.

 No feelings and emotions: AI machines can be an outstanding performer, but still it does
not have the feeling so it cannot make any kind of emotional attachment with human, and
may sometime be harmful for users if the proper care is not taken.

Chapter 7 : Machine Learning and AI

158

 Increase dependency on machines: With the increment of technology, people are getting
more dependent on devices and hence they are losing their mental capabilities.

 No Original Creativity: As humans are so creative and can imagine some new ideas but
still AI machines cannot beat this power of human intelligence and cannot be creative and
imaginative.

7.9. Common examples of AI using python

a) Chatbot
In the past few years, chatbots in Python have become wildly popular in the tech and
business sectors. These intelligent bots are so adept at imitating natural human languages
and conversing with humans, that companies across various industrial sectors are adopting
them. From e-commerce firms to healthcare institutions, everyone seems to be leveraging
this nifty tool to drive business benefits.

Figure 24: example of Chatbot

b) Search and Recommendation Algorithms
When you want to watch a movie or shop online, have you noticed that the items suggested
to you are often aligned with your interests or recent searches? These smart
recommendation systems have learned your behavior and interests over time by following
your online activity. The data is collected at the front end (from the user) and stored and
analyzed through machine learning and deep learning. It is then able to predict your
preferences, usually, and offer recommendations for things you might want to buy or listen
to next.

Figure 25: Example of Movies recommendation System

Chapter 7 : Machine Learning and AI

159

c) Face Recognition Python Project
 Face Recognition is a technology in computer vision. In Face recognition / detection we
 locate and visualize the human faces in any digital image.

 It is a subdomain of Object Detection, where we try to observe the instance of semantic
 objects. These objects are of particular class such as animals, cars, humans, etc. Face
 Detection technology has importance in many fields like marketing and security.

Figure 26: Example of Face Recognition

d) Digital voice assistants

 A digital assistant, also referred to as a predictive chatbot, is a sophisticated
 computer programme that mimics conversations with its users, usually online.

 Digital assistants learn as they go and offer a tailored, conversational experience by
 combining machine learning, sophisticated artificial intelligence (AI), natural language
 processing, and NLP. Algorithms can develop data models that discover patterns of
 behaviour and then enhance those patterns as data is supplied by combining previous
 information such as buying preferences, home ownership, geography, family size, and so
 forth. Digital assistants can deliver complicated answers, suggestions, forecasts, and even
 start conversations by learning about a user's past, preferences, and other information.

Figure 27: Example of Digital Voice Assistant

Chapter 7 : Machine Learning and AI

160

e) Artificial Intelligence in Medical Diagnosis
 Medical imaging and diagnosis powered by AI should witness more than 40% growth to
 surpass USD 2.5 billion by 2024.” – Global Market Insights. With the help of Neural
 Networks and Deep learning models, Artificial Intelligence is revolutionizing the image
 diagnosis field in medicine. It has taken over the complex analysis of MRI scans and made
 it a simpler process.

 Figure 28: Artificial Intelligence in Medical Diagnosis

f) Artificial Intelligence in Decision Making

 The decision-making process has benefited greatly from artificial intelligence. AI has
 helped businesses by researching client demands and assessing any hazards, not just in the
 healthcare sector.

 Using surgical robots to reduce errors and variances and ultimately aid in improving
 the effectiveness of surgeons is a potent application of artificial intelligence in decision-
 making. The Da Vinci is one such surgical robot that gives experienced surgeons more
 flexibility and control than they would have with traditional techniques to carry out difficult
 operations.

Figure 29: Artificial Intelligence in Decision Making

Chapter 7 : Machine Learning and AI

161

Exercise
Objective Type Questions

1. What is Artificial Intelligence?

a) Artificial Intelligence is a field that aims to make humans more intelligent
b) Artificial Intelligence is a field that aims to improve the security
c) Artificial Intelligence is a field that aims to develop intelligent machines
d) Artificial Intelligence is a field that aims to mine the data

2. Which of the following is the branch of Artificial Intelligence?

a) Machine Learning
b) Cyber forensics
c) Full-Stack Developer
d) Network Design

 3. In how many categories process of Artificial Intelligence is categorized?

a) categorized into 5 categories
b) processes are categorized based on the input provided
c) categorized into 3 categories
d) process is not categorized

4. _________ number of informed search method are there in Artificial Intelligence.

a) 4
b) 3
c) 2
d) 1

5. Select the most appropriate situation for that a blind search can be used.

a) Real-life situation
b) Small Search Space
c) Complex game
d) All of the above

6. A robot is able to change its own trajectory as per the external conditions, then the

robot is considered as the__
a) Mobile
b) Non-Servo
c) Open Loop
d) Intelligent

Chapter 7 : Machine Learning and AI

162

7. Which language is not commonly used for AI?
a) LIST
b) PROLOG
c) Python
d) Perl

8. Artificial Intelligence is about_____.
a) Playing a game on Computer
b) Making a machine Intelligent
c) Programming on Machine with your Own Intelligence
d) Putting your intelligence in Machine

9. Which of the following is an application of Artificial Intelligence?
a) It helps to exploit vulnerabilities to secure the firm
b) Language understanding and problem-solving (Text analytics and NLP)
c) Easy to create a website
d) It helps to deploy applications on the cloud

10. Which of the following is not an application of artificial intelligence?
a) Face recognition system
b) Chatbots
c) LIDAR
d) DBMS

11. Which of the following is an advantage of artificial intelligence?
a) Reduces the time taken to solve the problem
b) Helps in providing security
c) Have the ability to think hence makes the work easier
d) All of the above

12. What is Weak AI?
a) the study of mental faculties using mental models implemented on a computer
b) the embodiment of human intellectual capabilities within a computer
c) a set of computer programs that produce output that would be considered to reflect
 intelligence if it were generated by humans
d) all of the mentioned

Chapter 7 : Machine Learning and AI

163

13. Which of the following environment is strategic?
a) Rational
b) Deterministic
c) Partial
d) Stochastic

14. What is the function of the system Student?
a) program that can read algebra word problems only
b) system which can solve algebra word problems but not read
c) system which can read and solve algebra word problems
d) None of the mentioned

15. What is the goal of Artificial Intelligence?
a) To solve artificial problems
b) To extract scientific causes
c) To explain various sorts of intelligence
d) To solve real-world problems

Subjective Type Questions

1. Which programming language is used for AI?
2. What is Deep Learning, and how is it used in real-world?
3. What are the types of Machine Learning?
4. What are the types of AI?
5. How is machine learning related to AI?
6. What are parametric and non-parametric model?
7. What is Strong AI, and how is it different from the Weak AI?
8. What is overfitting? How can it be overcome in Machine Learning?
9. What is NLP? What are the various components of NLP?
10. Give a brief introduction to the Turing test in AI?

Chapter 8 : Data Science and Analytics Concepts

164

Chapter 8

Data Science and Analytics Concepts

8.1. What is Data Science and Analytics? The Data Science Process

Data Science is a field that gives insights from structured and unstructured data, using different
scientific methods and algorithms, and consequently helps in generating insights, making
predictions and devising data driver solutions. It uses a large amount of data to get meaningful
insights using statistics and computation for decision making.

The data used in Data Science is usually collected from different sources, such as e-commerce
sites, surveys, social media, and internet searches. All this access to data has become possible due
to the advanced technologies for data collection. This data helps in making predictions and
providing profits to the businesses accordingly. Data Science is the most discussed topic in today’s
time and is a hot career option due to the great opportunities it has to offer.

Figure 30: Data Science and Analytics

Chapter 8 : Data Science and Analytics Concepts

165

Life Cycle of Data Science.

Figure 31: Life Cycle of Data Science

Phase 1: Business Understanding
Phase 2: Data Collection
Phase 3: Data Preparation
Phase 4: Exploratory Data Analysis
Phase 5: Model Building
Phase 6: Model Deployment and Maintenance

Data Analyst:

Figure 32: Who is Data Analyst?

Chapter 8 : Data Science and Analytics Concepts

166

The role of a Data Analyst is quite similar to a Data Scientist in terms of responsibilities, and skills
required. The skills shared between these two roles include SQL and data query knowledge, data
preparation and cleaning, applying statistical and mathematical methods to find the insights, data
visualizations, and data reporting.

The main difference between the two roles is that Data Analysts do not need to be skilled in
programming languages and do not need to perform data modeling or have the knowledge of
machine learning.

The tools used by both Data Scientists and Data Analysts are also different. The tools used by Data
Analysts Are Tableau, Microsoft Excel, SAP, SAS, and Qlik.Data Analysts also perform the task
of data mining and data modeling, but they use SAS, Rapid Miner, KNIME, and IBM SPSS
Moderator. They are provided with the problem statement and the goal. They just have to perform
the data analysis and deliver data reporting to the managers.

8.2. Framing the problem
When it comes to the problem framing process, there are four key steps to follow once the problem
statement is introduced. These can help you better understand and visualize the problem as it
relates to larger business needs. Using a visual aid to look at a problem can give your team a bigger
picture view of the problem you’re trying to solve. By contextualizing, prioritizing, and
understanding the details on a deeper level, your team can develop a different point of view when
reviewing the problem with stakeholders.

Figure 33: Problem Framing Process

1. Define the problem
Analyze your problem in context with the system or process it presents itself in. Ask
questions such as, “Where does this problem live within the system?” and, “What is the
root cause of the problem?”

Chapter 8 : Data Science and Analytics Concepts

167

2. Prioritize the problem

Next, prioritize the pain points based on other issues and Questions such as, “Does this
problem prevent objectives from being met?” and, “Will this problem deplete necessary
resources?” are good ones to get you started.

3. Understand the problem

To understand the problem, collect information from diverse stakeholders and department
leaders. This will ensure you have a wide range of data.

4. Approve the solution

Finally, it's time to get your solution approved. Quality assure your solution by testing in
one or more internal scenarios. This way you can be sure it works before introducing it to
external customers.

8.3. Collecting
Before an analyst begins collecting data, they must answer three questions first:
 What’s the goal or purpose of this research?
 What kinds of data are they planning on gathering?
 What methods and procedures will be used to collect, store, and process the information?
Additionally, we can break up data into qualitative and quantitative types. Qualitative data covers
descriptions such as color, size, quality, and appearance. Quantitative data, unsurprisingly, deals
with numbers, such as statistics, poll numbers, percentages, etc. Data collection could mean a
telephone survey, a mail-in comment card, or even some guy with a clipboard asking passersby
some questions. Data collection breaks down into two methods.

The two methods are:

 Primary.: As the name implies, this is original, first-hand data collected by the data
researchers. This process is the initial information gathering step, performed before anyone
carries out any further or related research. Primary data results are highly accurate provided
the researcher collects the information. However, there’s a downside, as first-hand research
is potentially time-consuming and expensive.

 Secondary.:Secondary data is second-hand data collected by other parties and already
having undergone statistical analysis. This data is either information that the researcher has
tasked other people to collect or information the researcher has looked up. Simply put, it’s
second-hand information. Although it’s easier and cheaper to obtain than primary
information, secondary information raises concerns regarding accuracy and authenticity.
Quantitative data makes up a majority of secondary data.

Chapter 8 : Data Science and Analytics Concepts

168

8.4. Processing

Data processing occurs when data is collected and translated into usable information. Usually
performed by a data scientist or team of data scientists, it is important for data processing to be
done correctly as not to negatively affect the end product, or data output. Data processing starts
with data in its raw form and converts it into a more readable format (graphs, documents, etc.),
giving it the form and context necessary to be interpreted by computers and utilized by employees
throughout an organization.

8.4.1 Six stages of data processing

Figure 34: Stages of data processing

1. Data collection

Collecting data is the first step in data processing. Data is pulled from available sources, including .
It is important that the data sources available are trustworthy and well-built so the data collected
(and later used as information) is of the highest possible quality.

2. Data preparation
Once the data is collected, it then enters the stage. Data preparation, often referred to as “pre-
processing” is the stage at which raw data is cleaned up and organized for the following stage of
data processing. During preparation, raw data is diligently checked for any errors. The purpose of
this step is to eliminate bad data (incomplete, or incorrect data) and begin to create high-quality
data for the best .

Chapter 8 : Data Science and Analytics Concepts

169

3. Data input

The clean data is then entered into its destination (perhaps a CRM like Salesforce or a data
warehouse like and translated into a language that it can understand. Data input is the first stage in
which raw data begins to take the form of usable information.

4. Processing

During this stage, the data inputted to the computer in the previous stage is actually processed for
interpretation. Processing is done using algorithms, though the process itself may vary slightly
depending on the source of data being processed (data lakes, social networks, connected devices
etc.) and its intended use (examining advertising patterns, medical diagnosis from connected
devices, determining customer needs, etc.).

5. Data output/interpretation

The output/interpretation stage is the stage at which data is finally usable to non-data scientists. It
is translated, readable, and often in the form of graphs, videos, images, plain text, etc.). Members
of the company or institution can now begin for their own data analytics projects.

6. Data storage

The final stage of data processing is After all of the data is processed, it is then stored for future
use. While some information may be put to use immediately, much of it will serve a purpose later
on. Plus, properly stored data is a necessity for compliance with data protection legislation
like When data is properly stored, it can be quickly and easily accessed by members of the
organization when needed.

8.5. Cleaning and Munging Data

Figure 35: Cleaning and Munging Data

When working with data, your analysis and insights are only as good as the data you use. If you’re
performing data analysis with dirty data, your organization can’t make efficient and effective
decisions with that data. Data cleaning is a critical part of data management that allows you to
validate that you have a high quality of data.

Chapter 8 : Data Science and Analytics Concepts

170

Data cleaning includes more than just fixing spelling or syntax errors. It’s a fundamental aspect of
data science analytics and an important machine learning technique. Today, we’ll learn more about
data cleaning, its benefits, issues that can arise with your data

Data cleaning, or data cleansing, is the important process of correcting or removing incorrect,
incomplete, or duplicate data within a dataset. Data cleaning should be the first step in your
workflow. When working with large datasets and combining various data sources, there’s a strong
possibility you may duplicate or mislabel data. If you have inaccurate or incorrect data, it will lose
its quality, and your algorithms and outcomes become unreliable.

Data cleaning differs from data transformation because you’re actually removing data that
doesn’t belong in your dataset. With data transformation, you’re changing your data to a different
format or structure. Data transformation processes are sometimes referred to as data

wrangling or data munging. The data cleaning process is what we’ll focus on today.

To determine data quality, you can study its features and weigh them according to what’s important
to your organization and your project.

There are five main features to look for when evaluating your data:

 Consistency: Is your data consistent across your datasets?
 Accuracy: Is your data close to the true values?
 Completeness: Does your data include all required information?
 Validity: Does your data correspond with business rules and/or restrictions?
 Uniformity: Is your data specified using consistent units of measurement?

Now that we know how to recognize high-quality data, let’s dive deeper into the process of data
science cleaning, why it’s important, and how to do it effectively.

8.6. Exploratory Data Analysis

Exploratory Data Analysis refers to the critical process of performing initial investigations on data
so as to discover patterns, to spot anomalies, to test hypothesis and to check assumptions with the
help of summary statistics and graphical representations. It is a good practice to understand the data
first and try to gather as many insights from it. EDA is all about making sense of data in hand,
before getting them dirty with it.
To understanding the concept and techniques we’ll take an example of white variant of which is
available on UCI Machine Learning Repository and try to catch hold of as many insights from the
data set using EDA.
To starts with, import necessary libraries (for this example pandas, numpy, matplotlib and seaborn)
and loaded the data set.
Note : Whatever inferences are extracted, is mentioned with bullet points.

Chapter 8 : Data Science and Analytics Concepts

171

Figure 36: Winequality-white.csv dataset

 Original data is separated by delimiter “;” in given data set.
 To take a closer look at the data took help of “. head ()” function of pandas library which

returns first five observations of the data set. Similarly, “. tail ()” returns last five observations
of the data set.

find out the total number of rows and columns in the data set using “.shape”.

Figure 37: Total number of rows and columns in the data

 Dataset comprises of 4898 observations and 12 characteristics.
 Out of which one is dependent variable and rest 11 are independent variables — physico-

chemical characteristics.
It is also a good practice to know the columns and their corresponding data types,along with finding
whether they contain null values or not.

Figure 38: finding whether contains null values or not.

 Data has only float and integer values.
 No variable column has null/missing values.

Chapter 8 : Data Science and Analytics Concepts

172

The describe() function in pandas is very handy in getting various summary statistics. This function
returns the count, mean, standard deviation, minimum and maximum values and the quantiles of
the data.

Figure 39: Describing the dataset

8.7. Visualizing results
Data Visualization techniques involve the generation of graphical or pictorial representation of
DATA, form which leads you to understand the insight of a given data set. This visualisation
technique aims to identify the Patterns, Trends, Correlations, and Outliers of data sets.

Data visualization techniques most important part of Data Science, there won’t be any doubt about
it. And even in the Data Analytics space as well the Data visualization doing a major role. We will
discuss this in detail with help of Python packages and how it helps during the Data Science process
flow. This is a very interesting topic for every Data Scientist and Data Analyst.

Figure 40: Data Visualization

Chapter 8 : Data Science and Analytics Concepts

173

Exercise

OBJECTIVE TYPE QUESTIONS

1. Which of the following input can be accepted by DataFrame?
a) Structured ndarray
b) Series
c) DataFrame
d) All of the mentioned

2. Which of the following input can be accepted by DataFrame?
a) Structured ndarray
b) Series
c) DataFrame
d) All of the mentioned

3. If data is an ndarray, index must be the same length as data.
a) True
b) False

4.Point out the wrong statement.
a) A DataFrame is like a fixed-size dict in that you can get and set values by index label
b) Series can be be passed into most NumPy methods expecting an ndarray
c) A key difference between Series and ndarray is that operations between Series automatically
align the data based on label
d) None of the mentioned

5.The result of an operation between unaligned Series will have the ________ of the indexes
involved.
a) intersection
b) union
c) total
d) all of the mentioned

6. Pandas is an open-source _______ Library?
a). Ruby
b). Javascript
c). Java
d.)Python

7. Pandas key data structure is called?

a). Keyframe
b). DataFrame
c). Statistics
d). Econometrics

Chapter 8 : Data Science and Analytics Concepts

174

8. In pandas, Index values must be?
a) unique
b). hashable
c). Both A and B
d) None of the above

9. What will be syntax for pandas dataframe?
a). pandas.DataFrame(data, index, dtype, copy)
b). pandas.DataFrame(data, index, rows, dtype, copy)
c). pandas_DataFrame(data, index, columns, dtype, copy)
d) pandas.DataFrame(data, index, columns, dtype, copy)

10. Which of the following thing can be data in Pandas?
a). a python dict
b). an ndarray
c). a scalar value
d). All of the above

11. Which of the following makes use of pandas and returns data in a series or dataFrame?
a)PandaSDMX
b). freedapi
c). OutPy
d). Inpy

12. What will be output for the following code?
import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(2))
print s.size
a).0
b). 1
c). 2
d). 3

13. What will be output for the following code?
import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print s['a']
a). 1
b). 2
c). 3
d). 4

Chapter 8 : Data Science and Analytics Concepts

175

14. Which of the following takes a dict of dicts or a dict of array-like sequences and returns
a DataFrame?
a) DataFrame.from_items
b) DataFrame.from_records
c) DataFrame.from_dict
d) All of the mentioned

15. Which of the following operation works with the same syntax as the analogous dict
operations?
a) Getting columns
b) Setting columns
c) Deleting columns
d) All of the mentioned

ANSWERS

1. d 6. d 11. b
2. d 7. b 12. c
3. a 8. c 13. a
4. a 9. d 14. a
5. b 10. d 15. d

SUBJECTIVE TYPE QUESTIONS

1. Mention the different types of Data Structures in Pandas?
2. Define the different ways a DataFrame can be created in pandas?
3. Explain Categorical data in Pandas?
4. How can we create a copy of the series in Pandas?
5. How will you add a column to a pandas DataFrame?
6. How to Delete Indices, Rows or Columns From a Pandas Data Frame?
7. How to get the items of series A not present in series B?
8. How to get frequency counts of unique items of a series?
9. Mention The Different Types Of Data Structures In pandas?
10. What Are The Key Features Of pandas Library?

11. Explain Categorical Data In pandas
12. Define Python pandas

13. What Is A pandas DataFrame? How Will You Create An Empty DataFrame In pandas?
14. What Are The Key Features Of pandas Library?
15. What is Python pandas used for?

Chapter 9 : Introduction to NumPy

176

Chapter 9

Introduction to NumPy (7 Hrs.)
9.1. Array Processing Package

NumPy is a general-purpose array-processing package. It provides a high-performance
multidimensional array object, and tools for working with these arrays. It is the fundamental
package for scientific computing with Python. It is open-source software. It contains various
features including these important ones:

1. A powerful N-dimensional array object
2. Sophisticated (broadcasting) functions
3. Tools for integrating C/C++ and Fortran code
4. Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional
container of generic data. Arbitrary data-types can be defined using Numpy which allows
NumPy to seamlessly and speedily integrate with a wide variety of databases.

Installation:

Example:

Code 16: Numpy array example

pip install Numpy

Chapter 9 : Introduction to NumPy

177

Output:

Output 10: Numpy Array

9.2. Array types
9.3. Array slicing

 Slicing in python means taking elements from one given index to another given
index.

 We pass slice instead of index like this: [start:end].
 We can also define the step, like this: [start:end:step].
 If we don't pass start its considered 0
 If we don't pass end its considered length of array in that dimension.
 If we don't pass step its considered 1

Example 1

Slice elements from index 1 to index 5 from the following array:

Code 17 : Numpy array Slicing

Output:

Output 11: Slicing output

Chapter 9 : Introduction to NumPy

178

Example 2

Slice elements from index 4 to the end of the array:

Code 18 : Numpy array Slicing

Output:

Output 12: Slicing output

Example 3

Slice elements from the beginning to index 4 (not included):

Code 19: Numpy array Slicing

Output:

Output 13: Slicing output

9.3.1 Negative Slicing
Use the minus operator to refer to an index from the end:

Chapter 9 : Introduction to NumPy

179

Example 1

Slice from the index 3 from the end to index 1 from the end:

Code 20: Negative Slicing

Output:

Output 14: Negative Slicing

9.3.3 Slicing 2-D Array
Example 1

From the second element, slice elements from index 1 to index 4 (not included):

Code 21: Slicing 2D-Array

Output:

Output 15: 2D-array Slicing Output

Chapter 9 : Introduction to NumPy

180

Example 2

From both elements, return index 2:

Code 22: Slicing 2D-Array

Output:

Output 16: 2D-array Slicing Output

9.4. Computation on NumPy Arrays – Universal functions
Up until now, we have been discussing some of the basic nuts and bolts of NumPy; in the
next few sections, we will dive into the reasons that NumPy is so important in the Python
data science world. Namely, it provides an easy and flexible interface to optimized
computation with arrays of data.
Computation on NumPy arrays can be very fast, or it can be very slow. The key to making it
fast is to use vectorized operations, generally implemented through NumPy's universal

functions (ufuncs).
Universal functions in Numpy are simple mathematical functions. It is just a term that we
gave to mathematical functions in the Numpy library. Numpy provides various universal
functions that cover a wide variety of operations.
These functions include standard trigonometric functions, functions for arithmetic operations,
handling complex numbers, statistical functions, etc. Universal functions have various
characteristics which are as follows-

 These functions operate on ndarray (N-dimensional array) i.e. Numpy’s array class.
 It performs fast element-wise array operations.
 It supports various features like array broadcasting, type casting etc.
 Numpy, universal functions are objects those belongs to numpy.ufunc class.
 Python functions can also be created as a universal function

using frompyfunc library function.
 Some ufuncs are called automatically when the corresponding arithmetic operator

is used on arrays. For example when addition of two array is performed element-
wise using ‘+’ operator then np.add() is called internally.

Chapter 9 : Introduction to NumPy

181

Some of the basic universal functions in Numpy are-

9.4.1 Array arithmetic

NumPy's ufuncs feel very natural to use because they make use of Python's native arithmetic
operators. The standard addition, subtraction, multiplication, and division can all be used:

Code 23: Array Arithmetic

Output:

Output 17: Array Arithmetic

The following table lists the arithmetic operators implemented in NumPy:

Operator Equivalent ufunc Description

+ np.add Addition (e.g., 1 + 1 = 2)

- np.subtract Subtraction (e.g., 3 - 2 = 1)

- np.negative Unary negation (e.g., -2)

* np.multiply Multiplication (e.g., 2 * 3 = 6)

/ np.divide Division (e.g., 3 / 2 = 1.5)

// np.floor_divide Floor division (e.g., 3 // 2 = 1)

** np.power Exponentiation (e.g., 2 ** 3 = 8)

% np.mod Modulus/remainder (e.g., 9 % 4 = 1)
Table 8: List of Arithmetic operators implemented

Chapter 9 : Introduction to NumPy

182

9.5. Aggregations: Min, Max, etc.
In the Python numpy module, we have many aggregate functions or statistical functions to work
with a single-dimensional or multi-dimensional array. The Python numpy aggregate functions are
sum, min, max, mean, average, product, median, standard deviation, variance, argmin, argmax and
percentile.
To demonstrate these Python numpy aggregate functions, we use the below-shown arrays.

Python Numpy Aggregate Functions Examples:
9.5.1. Python numpy sum:

Code 24: Numpy sum()

Output:

Output 18: Numpy sum()

Chapter 9 : Introduction to NumPy

183

9.5.2. Python numpy average:

Python numpy average function returns the average of a given array.

Code 25: Numpy averagre()

Output:

Output 19: Numpy averagre()

Average of x and Y axis:

Code 26: Numpy average along with axis (with Axis name)

Output:

Output 20: Numpy average along with axis (with Axis name)

9.5.3. Python numpy min :

The Python numpy min function returns the minimum value in an array or a given axis.

Code 27: Numpy minimum function min()

Chapter 9 : Introduction to NumPy

184

Output:

Output 21: Numpy minimum function min()

We are finding the numpy array minimum value in the X and Y-axis.

Code 28: Numpy minimum function with and without axis name

Output:

Output 22: Numpy minimum function with and without axis name

9.5.4. Python numpy max

The Python numpy max function returns the maximum number from a given array or in a given
axis.

Code 29: Numpy maximum function max()

Chapter 9 : Introduction to NumPy

185

Output:

Output 23: Numpy maximum function max()

Find the maximum value in the X and Y-axis using numpy max function.

Code 30: Numpy maximum function max() with axis name

Output:

Output 24: Numpy maximum function max() with axis name

9.6. N-Dimensional arrays
An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size.
The number of dimensions and items in an array is defined by its shape, which is a tuple of N
positive integers that specify the sizes of each dimension.

Figure 41: N-Dimensional arrays

The type of items in the array is specified by a separate data-type object (dtype), one of which is
associated with each ndarray.

Chapter 9 : Introduction to NumPy

186

Like other container objects in Python, the contents of an ndarray can be accessed and modified
by indexing or slicing the array (using, for example, N integers), and via the methods and
attributes of the ndarray.

The basic ndarray is created using an array function in NumPy as follows −

 numpy.array
It creates an ndarray from any object exposing array interface, or from any method that returns an
array.

 numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
The above constructor takes the following parameters –

Sr.No. Parameter & Description

1 object
Any object exposing the array interface method returns an array, or any (nested)
sequence.

2 dtype
Desired data type of array, optional

3 copy
Optional. By default (true), the object is copied

4 order
C (row major) or F (column major) or A (any) (default)

5 subok
By default, returned array forced to be a base class array. If true, sub-classes passed
through

6 ndmin
Specifies minimum dimensions of resultant array

Table 9: Numpy array Parameters

Example:

Code 31: 1D array

Chapter 9 : Introduction to NumPy

187

Output:

Output 25: 1D array

Example:

More than one dimensions:

Code 32: 2D array

Output:

Output 26: 2D array

9.7. Broadcasting

The term broadcasting describes how numpy treats arrays with different shapes during arithmetic
operations. Subject to certain constraints, the smaller array is “broadcast” across the larger array
so that they have compatible shapes. Broadcasting is a powerful mechanism that allows numpy
to work with arrays of different shapes when performing arithmetic operations. Frequently we
have a smaller array and a larger array, and we want to use the smaller array multiple times to
perform some operation on the larger array.
For example, suppose that we want to add a constant vector to each row of a matrix. We could
do like this:

Chapter 9 : Introduction to NumPy

188

Code 33: Adding a constant vector to each row of a matrix

Now y is the following:

Output 27: Adding a constant vector to each row of a matrix

 This works; however, when the matrix x is very large, computing an explicit loop in Python
could be slow.

 Note that adding the vector v to each row of the matrix x is equivalent to forming a matrix
vv by stacking multiple copies of v vertically.

 Then performing elementwise summation of x and vv. We could implement this approach
like this:
Using Tile:

Code 34: Adding a constant vector to each row of a matrix using tile() function

Chapter 9 : Introduction to NumPy

189

Output:

Output 28: Adding a constant vector to each row of a matrix using tile() function

Broadcasting:

Numpy broadcasting allows us to perform this computation without actually creating
multiple copies of v. Consider this version, using broadcasting:

Code 35: Adding to each row of array using broadcasting

 Output:

Output 29: Adding to each row of array using broadcasting

 The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to
broadcasting; this line works as if v actually had shape (4, 3), where each row was a copy
of v, and the sum was performed elementwise.

Chapter 9 : Introduction to NumPy

190

Broadcasting Rules:

The trailing axes of both arrays must either be 1 or have the same size for broadcasting to occur.
Otherwise, a “ValueError: frames are not aligned” exception is thrown.

Figure 42: Broadcasting rules

Broadcasting in Action:

Figure 43: Broadcasting in Action

Chapter 9 : Introduction to NumPy

191

9.8. Fancy indexing

In Fancy Indexing, we pass array of indices instead of single scalar(numbers) to fetch elements
at different index points. Remember that the shape of the output depends on the shape of
the index arrays rather than the shape of the array being indexed.
Let’s go through some examples to understand this concept:

Code 36: Fancy indexing

Output:

Output 30: Fancy Indexing

Chapter 9 : Introduction to NumPy

192

Case A
a. 1D Array:

For 1D array, let’s suppose we want to access elements at index position
of 0, 4 and -1.

Figure 44: Fancy indexing 1D array method 1

Figure 45: Fancy indexing 1D array Method 2

9.9. Sorting Arrays
Sorting means putting elements in an ordered sequence. Ordered sequence is any sequence
that has an order corresponding to elements, like numeric or alphabetical, ascending or
descending. The NumPy ndarray object has a function called sort(), that will sort a
specified array.
Example:

Code 37: Example 1. Sorting arrays 1D

Output:

Output 31: Example 1. Sorting arrays 1D

Chapter 9 : Introduction to NumPy

193

Example:

Code 38: Example 2. Sorting arrays 1D

Output:

Output 32: Example 2. Sorting arrays 1D

Sorting a 2-D Array:

Code 39: Sorting 2D arrays

Output:

Output 33: Sorting 2D arrays

Chapter 9 : Introduction to NumPy

194

Exercise

Objective Type Question
1. NumPy stands for?
a) Numerical Python
b) Number In Python
c) Numbering Python
d) None Of the above
2. Numpy developed by?
a) Jim Hugunin
b) Wes McKinney
c) Travis Oliphant
d) Guido van Rossum
3. Which of the following Numpy operation are correct?
a) Operations related to linear algebra.
b) Mathematical and logical operations on arrays.
c) Fourier transforms and routines for shape manipulation.
d) All of the above
4. NumPy is often used along with packages like?
a) Node.js
b) SciPy
c) Matplotlib
d) Both B and C
5. Which of the following is contained in NumPy library?
a) n-dimensional array object
b) tools for integrating C/C++ and Fortran code
c)All of the mentioned
d) Fourier transform
6. which of the following function is used to combine different vectors so as to obtain result
for
each n-uplet?
a) iid_
b) ix_
c) ixd_
d) None of the above

Chapter 9 : Introduction to NumPy

195

7. Which of the following sets the size of the buffer used in ufuncs?
a) setsize(size)
b) bufsize(size)
c) setbufsize(size)
d) All of the mentioned
8. Which of the following attribute should be used while checking for type combination
input
and output?
a) .types
b) .class
c) .type
d) None of the above
9. Which of the following function stacks 1D arrays as columns into a 2D array?
a) column_stack
b) com_stack
c) row_stack
d) All of the above
10. The ________ function returns its argument with a modified shape, whereas the

method modifies the array itself.
a) resize, reshape
b) reshape, resize
c) reshape2, resize
d) None of the above
11. Point out the correct statement in NumPy.
a) Numpy array class is called ndarray
b) In Numpy, dimensions are called axes
c) NumPy main object is the homogeneous multidimensional array
d) All of the mentioned
12. Which of the following method creates a new array object that looks at the same data?
a) copy
b) paste
c) view
d) All of the above

Chapter 9 : Introduction to NumPy

196

13. Which of the following function take only single value as input?
a) fmin
b) minimum
c) iscomplex
d) None of the above
14. Which of the following set the floating-point error callback function or log object?
a) settercall
b) setter
c) setterstack
d) All of the above
15. What will be output for the following code?
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print a
a) [1.+0.j]
b) [[1.+0.j, 3.+0.j]]
c) [[1.+0.j, 2.+0.j, 3.+0.j]]
d) [1.+0.j, 2.+0.j, 3.+0.j]
Subjective Type Questions
1. Why to use NumPy?
2. Explain what is ndarray in NumPy
3. What is the difference between ndarray and array in NumPy?
4. How to convert a numeric array to a categorical (text) array?
5. How would you reverse a NumPy array?
6. What are the differences between NumPy arrays and matrices?
7. What are the advantages of NumPy over regular Python lists?
8. What are the differences between np.mean() vs np.average() in Python NumPy?
9. What are the differences between NumPy arrays and matrices?
10. Explain what is Vectorization in NumPy
11. Why is NumPy Array good compared to Python Lists?
12. How can you reshape NumPy array?
13. How many dimensions can a NumPy array have?
14. How are NumPy Arrays better than Lists in Python?
15. Explain the data types supported by NumPy.

Chapter 10 : Data Analysis Tool : Pandas

197

Chapter 10.

Data Analysis Tool: Pandas

10.1. Introduction to the Data Analysis Library Pandas
Pandas is an open-source library designed primarily for working quickly and logically with
relational or labelled data. It offers a range of data structures and procedures for working with
time series and numerical data. The NumPy library serves as the foundation for this library.
Pandas is quick and offers its users exceptional performance & productivity.
Processing steps including merging, cleansing, and restructuring are all necessary for data
analysis. For quick data processing, a variety of tools are available, including Numpy, Scipy,
Cython, and Panda. However, we favour Pandas since they are quicker, easier, and more
expressive to utilise than other tools.

Given that Pandas is built on top of the Numpy package, Numpy is necessary in order to use
Pandas. Before Pandas, Python was capable for data preparation, but it only provided limited
support for data analysis. So, Pandas came into the picture and enhanced the capabilities of data

analysis. It can perform five significant steps required for
processing and analysis of data irrespective of the origin of the
data, i.e., load, manipulate, prepare, model, and analyze.

 Figure 46: Pandas

History:
 Pandas were initially developed by Wes McKinney in 2008 while
he was working at AQR Capital Management. He convinced the
AQR to allow him to open source the Pandas. Another AQR
employee, Chang She, joined as the second major contributor to the
library in 2012. Over time many versions of pandas have been
released. The latest version of the pandas is 1.4.4.

Figure 47: Developer of Pandas Wes McKinney (2008)

10.2. Pandas objects – Series and Data frames
Integer, text, boolean, float, and other datatypes, including Python objects, can all be stored in a
Pandas Series, a one-dimensional indexed data structure. One data type can only be stored in a
Pandas Series at a time. The index of the series is the name given to the data's axis label. The labels
must be a hashable type even though they don't have to be unique. Integer, text, or even time-series
data can be used as the series' index. In general, a Pandas Series is just an Excel sheet's column,
with the row index serving as the series' index.

Chapter 10 : Data Analysis Tool : Pandas

198

10.2.1 Pandas Series
We can create a Pandas Series by using the following pandas.Series() constructor:-

pandas.Series([data, index, dtype, name, copy, …])

The parameters for the constructor of a Python Pandas Series are detailed as under:-
Parameters Remarks
data : array-like,
Iterable, dict, or scalar
value

Contains data stored in Series. Changed in version 0.23.0: If data
is a dict, argument order is maintained for Python 3.6 and later.

index : array-like or
Index (1d)

Values must be hashable and have the same length as data. Non-
unique index values are allowed. Will default to RangeIndex (0,
1, 2, …, n) if not provided. If both a dict and index sequence are
used, the index will override the keys found in the dict.

dtype : str, numpy.dtype,
or ExtensionDtype,
optional

Data type for the output Series. If not specified, this will be
inferred from data.

copy : bool, default False Copy input data.
Table 10: Pandas Series Parameters

10.2.1.1 How to create an empty Pandas Series?

Code 40: Empty Pandas Series

Output:

Output 34: Empty Pandas Series

10.2.1.2 How to create a Pandas Series from a list?

Code 41: Pandas series from a list

Chapter 10 : Data Analysis Tool : Pandas

199

Output:

Output 35: Pandas series from a list

10.2.2 Pandas Dataframe
One of pandas' main data structures is the pandas dataframe. A two-dimensional size changeable
array with adjustable row indices and column names is known as a "Pandas dataframe."
Generally speaking, it resembles an excel sheet or SQL table. It can also be thought of as a
container for series objects similar to Python's dict. Various techniques for constructing a Pandas
Dataframe
The following pandas can be used to create or construct a Pandas Dataframe.
The function Object() { [native code] } for DataFrame():

pd.DataFrame([data, index, columns, dtype, name, copy, …])

A Pandas Dataframe can be created from:-

 Dict of 1D ndarrays, lists, dicts, or Series
 2-D numpy.ndarray
 Structured or record ndarray
 A Series
 Another DataFrame

The parameters for the constuctor of a Pandas Dataframe are detailed as under:-

Parameters Remarks
data : ndarray (structured or
homogeneous), Iterable, dict,
or DataFrame

Dict can contain Series, arrays, constants, or list-like objects
Changed in version 0.23.0: If data is a dict, column order follows
insertion-order for Python 3.6 and later. Changed in version 0.25.0:
If data is a list of dicts, column order follows insertion-order for
Python 3.6 and later.

index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no
indexing information part of input data and no index provided

columns : Index or array-like Column labels to use for resulting frame. Will default to
RangeIndex (0, 1, 2, …, n) if no column labels are provided

dtype, default None Data type to force. Only a single dtype is allowed. If None, infer
copy : bool, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input

Table 11: Parameters for Pandas Dataframe

Chapter 10 : Data Analysis Tool : Pandas

200

You can create an empty Pandas Dataframe using pandas.Dataframe() and later on you can add

Code 42: Empty Pandas Dataframe

the columns using df.columns = [list of column names] and to it

Output:

Output 36: Empty Pandas Dataframe

A pandas dataframe can be created from a 2 dimensional by using the following code:-

Code 43: Pandas Dataframe from 2D Numpy array

Output:

Output 37: Pandas Dataframe from 2D Numpy array

10.3 Data indexing and selection

Indexing in Pandas:
In Pandas, picking specific rows and columns of data from a DataFrame constitutes indexing.
Selecting all the rows and part of the columns, some of the rows and all the columns, or a portion
of each row and each column is what is referred to as indexing. Another name for indexing is
subset selection.

Chapter 10 : Data Analysis Tool : Pandas

201

There are a lot of ways to pull the elements, rows, and columns from a DataFrame. There are
some indexing method in Pandas which help in getting an element from a DataFrame. These
indexing methods appear very similar but behave very differently. Pandas support four types of
Multi-axes indexing they are:

 Dataframe.[] ; This function also known as indexing operator
Collectively, they are called the indexers. These are by far the most common ways to index
data. These are four function which help in getting the elements, rows, and columns from a
DataFrame.
Indexing a Dataframe using indexing operator [] :Indexing operator is used to refer to the square
brackets following an object. The indexers also use the indexing operator to make selections.
In this indexing operator to refer to df[].
Selecting a single column
In order to select a single column, we simply put the name of the column in-between the brackets

Code 44: Indexing: selecting a single column

Output:

Output 38: Indexing: selecting a single column

Chapter 10 : Data Analysis Tool : Pandas

202

Selecting multiple columns
In order to select multiple columns, we have to pass a list of columns in an indexing operator.

Code 45: selecting multiple columns

Output:

Output 39: selecting multiple columns

Indexing a DataFrame using

This function selects data by the label of the rows and columns. The df.loc indexer selects data
in a different way than just the indexing operator. It can select subsets of rows or columns. It can
also simultaneously select subsets of rows and columns.

Chapter 10 : Data Analysis Tool : Pandas

203

Selecting a single row
In order to select a single row using .loc[], we put a single row label in a .loc function.

Code 46: Selecting a single row using .loc[]

Output:
As shown in the output image, two series were returned since there was only one parameter both
of the times

Output 40: Selecting a single row using .loc[]

Selecting multiple rows
In order to select multiple rows, we put all the row labels in a list and pass that to function.

Code 47: Selecting multiple row using .loc[]

Chapter 10 : Data Analysis Tool : Pandas

204

Output

Output 41: Selecting multiple row using .loc[]

Selecting two rows and three columns
In order to select two rows and three columns, we select a two rows which we want to select and
three columns and put it in a separate list like this:
Syntax:
Dataframe.loc[["row1", "row2"], ["column1", "column2", "column3"]]

Code 48: Selecting two rows and three columns using .loc[]

Output:

Output 42: Selecting two rows and three columns using .loc[]

Selecting all of the rows and some columns
In order to select all of the rows and some columns, we use single colon [:] to select all of rows
and list of some columns which we want to select like this:
Syntax:
Dataframe.loc[:, ["column1", "column2", "column3"]]

Code 49: Selecting all rows and some columns using .loc[]

Chapter 10 : Data Analysis Tool : Pandas

205

Output:

Output 43: Selecting all rows and some columns using .loc[]

Indexing a DataFrame:

This function allows us to retrieve rows and columns by position. In order to do that, we’ll need
to specify the positions of the rows that we want, and the positions of the columns that we want
as well. The df.iloc indexer is very similar to df.loc but only uses integer locations to make its
selections.

Selecting a single row

In order to select a single row using .iloc[], we can pass a single integer to .iloc[] function.

Code 50: Selecting a single row using .iloc[]

Output:

Output 44: Selecting a single row using .iloc[]

Chapter 10 : Data Analysis Tool : Pandas

206

Methods for indexing in DataFrame

10.4 Nan objects
Missing Data can occur when no information is provided for one or more items or for a whole
unit. Missing Data is a very big problem in a real-life scenarios. Missing Data can also refer to
as NA(Not Available) values in pandas. In DataFrame sometimes many datasets simply arrive
with missing data, either because it exists and was not collected or it never existed. For Example,
Suppose different users being surveyed may choose not to share their income, some users may
choose not to share the address in this way many datasets went missing.

In Pandas missing data is represented by two value:
 None: None is a Python singleton object that is often used for missing data in Python

code.
 NaN : NaN (an acronym for Not a Number), is a special floating-point value recognized

by all systems that use the standard IEEE floating-point representation
Pandas treat None and NaN as essentially interchangeable for indicating missing or null values.
To facilitate this convention, there are several useful functions for detecting, removing, and
replacing null values in Pandas DataFrame:

Checking for missing values using isnull() and notnull()
In order to check missing values in Pandas DataFrame, we use a function isnull() and notnull().
Both function help in checking whether a value is NaN or not. These function can also be used
in Pandas Series in order to find null values in a series.

Checking missing values using isnull()
In order to check null values in Pandas DataFrame, we use isnull() function this function return
dataframe of Boolean values which are True for NaN values.

Function Description
Return top n rows of a data frame.
Return bottom n rows of a data frame.
Access a single value for a row/column label pair.
Access a single value for a row/column pair by integer position.
Purely integer-location based indexing for selection by position.

DataFrame.lookup() Label-based “fancy indexing” function for DataFrame.
Return item and drop from frame.

DataFrame.xs() Returns a cross-section (row(s) or column(s)) from the DataFrame.
Get item from object for given key (DataFrame column, Panel slice,
etc.).
Return boolean DataFrame showing whether each element in the
DataFrame is contained in values.
Return an object of same shape as self and whose corresponding entries
are from self where cond is True and otherwise are from other.
Return an object of same shape as self and whose corresponding entries
are from self where cond is False and otherwise are from other.
Query the columns of a frame with a boolean expression.
Insert column into DataFrame at specified location.

Table 12: Methods for indexing in DataFrame

Chapter 10 : Data Analysis Tool : Pandas

207

Code #1:

Code 51: Checking missing values using isnull()

Output:

Output 45: Checking missing values using isnull()

10.5 Manipulating Data Frames

Before manipulating the dataframe with pandas we have to understand what is data manipulation.
The data in the real world is very unpleasant & unordered so by performing certain operations
we can make data understandable based on one’s requirements, this process of converting
unordered data into meaningful information can be done by data manipulation.
Pandas is an open-source library that is used from data manipulation to data analysis & is very
powerful, flexible & easy to use tool which can be imported using import pandas as pd. Pandas
deal essentially with data in 1-D and 2-D arrays; Although, pandas handles these two differently.
In pandas, 1-D arrays are stated as a series & a dataframe is simply a 2-D array.

Below are various operations used to manipulate the dataframe:
 First, import the library which is used in data manipulation i.e. pandas then assign and read

the dataframe:

Code 52: Importing the library for data manipulation

Chapter 10 : Data Analysis Tool : Pandas

208

Output:

Output 46: Importing the library for data manipulation

 We can read the dataframe by using head() function also which is having an argument (n)
i.e. number of rows to be displayed.

Code 53: read the dataframe by using head() function

Output:

Output 47: read the dataframe by using head() function

Chapter 10 : Data Analysis Tool : Pandas

209

 Counting the rows and columns in DataFrame using shape(). It returns the no. of rows and
columns enclosed in a tuple.

Code 54: Counting the rows and columns in DataFrame using shape().

Output:

Output 48: Counting the rows and columns in DataFrame using shape().

 Summary of Statistics of DataFrame using describe() method.

Code 55: Summary of Statistics of DataFrame using describe() method

Output:

Output 49: Summary of Statistics of DataFrame using describe() method

 Merging DataFrames using merge(), arguments passed are the dataframes to be merged
along with the column name.

Code 56: Merging DataFrames using merge()

Output:

Output 50: Merging DataFrames using merge()

Chapter 10 : Data Analysis Tool : Pandas

210

Creating a dataframe manually:

Code 57: Creating a dataframe manually

Output:

Output 51: Creating a dataframe manually

 Sorting the DataFrame using sort_values() method.

Code 58: Sorting the DataFrame using sort_values()

Output:

Output 52: Sorting the DataFrame using sort_values()

Chapter 10 : Data Analysis Tool : Pandas

211

 Creating another column in DataFrame, Here we will create column name percentage which
will calculate the percentage of student score by using aggregate function sum().

Code 59: Creating another column in DataFrame

Output:

Output 53: Creating another column in DataFrame

 Selecting DataFrame rows using logical operators:

Code 60: Selecting DataFrame rows using logical operators

Output:

Output 54: Selecting DataFrame rows using logical operators

Chapter 10 : Data Analysis Tool : Pandas

212

10.6 Grouping

Pandas groupby is used for grouping the data according to the categories and apply a function to
the categories. It also helps to aggregate data efficiently.

Pandas dataframe.groupby() function is used to split the data into groups based on some
criteria. pandas objects can be split on any of their axes. The abstract definition of grouping is
to provide a mapping of labels to group names.

Syntax:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True,
group_keys=True, squeeze=False, **kwargs)

Parameters :

 by: mapping, function, str, or iterable

 axis: int, default 0

 level: If the axis is a MultiIndex (hierarchical), group by a particular level or levels

 as_index: For aggregated output, return object with group labels as the index. Only
relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

 sort: Sort group keys. Get better performance by turning this off. Note this does not
influence the order of observations within each group. groupby preserves the order of rows
within each group.

 group_keys: When calling apply, add group keys to index to identify pieces

 squeeze: Reduce the dimensionality of the return type if possible, otherwise return a

consistent type

 Returns: GroupBy object
Table 13: Grouping parameters

Example #1: Use groupby() function to group the data based on the “Team”.

Code 61: Reading CSV file

Chapter 10 : Data Analysis Tool : Pandas

213

Output:

Output 55: CSV file

Example #2: Use groupby() function to form groups based on more than one category (i.e. Use
more than one column to perform the splitting).

Code 62: groupby() function to form groups based on more than one category

Chapter 10 : Data Analysis Tool : Pandas

214

Output:

Output 56: groupby() function to form groups based on more than one category

groupby() is a very powerful function with a lot of variations. It makes the task of splitting the
dataframe over some criteria really easy and efficient.
10.7 Filtering
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem
of data-centric python packages. Pandas is one of those packages and makes importing and
analyzing data much easier.
Pandas dataframe.filter() function is used to Subset rows or columns of dataframe according to
labels in the specified index. Note that this routine does not filter a dataframe on its contents.
The filter is applied to the labels of the index.

Syntax:

DataFrame.filter(items=None, like=None, regex=None, axis=None)
Parameters:

 items: List of info axis to restrict to (must not all be present)
 like: Keep info axis where “arg in col == True”
 regex: Keep info axis with re.search(regex, col) == True
 axis: The axis to filter on. By default, this is the info axis, ‘index’ for Series, ‘columns’ for

DataFrame
Table 14: Filtering parameters

Chapter 10 : Data Analysis Tool : Pandas

215

The items, like, and regex parameters are enforced to be mutually exclusive. axis defaults to the
info axis that is used when indexing with [].

Example #1: Use filter() function to filter out any three columns of the dataframe.

Code 63: Reading CSV file

Output:

Output 57: CSV file

Now filter the “Name”, “College” and “Salary” columns.

Code 64: Use filter() function to filter out any three columns of the dataframe.

Chapter 10 : Data Analysis Tool : Pandas

216

Output:

Output 58: Use filter() function to filter out any three columns of the dataframe.

Example #2: Use filter() function to subset all columns in a dataframe which has the letter ‘a’
or ‘A’ in its name

Note : filter() function also takes a regular expression as one of its parameter.

Code 65: Use filter() function to subset all columns in a dataframe which has the letter ‘a’ or ‘A’

in its name.

Chapter 10 : Data Analysis Tool : Pandas

217

Output:

Output 59: Use filter() function to subset all columns in a dataframe which has the letter ‘a’ or

‘A’ in its name.
The regular expression ‘[aA]’ looks for all column names which has an ‘a’ or an ‘A’ in its name.

10.8 Slicing
With the help of Pandas, we can perform many functions on data set like Slicing, Indexing,
Manipulating, and Cleaning Data frame.
Case 1: Slicing Pandas Data frame
Example 1: Slicing Rows

Code 66: Creating Dataframe for slicing

Chapter 10 : Data Analysis Tool : Pandas

218

Output:

Output 60: Dataframe for slicing

Slicing rows in data frame

Code 67: Slicing rows in data frame

Output:

Output 61: Slicing rows in data frame

Chapter 10 : Data Analysis Tool : Pandas

219

Example 2: Slicing Columns

Code 68: Slicing Columns

Output:

Output 62: Slicing Columns

Slicing columns in data frame:

Code 69: Slicing Columns

Chapter 10 : Data Analysis Tool : Pandas

220

Output:

Output 63: Slicing Columns

In the above example, we sliced the columns from the data frame.

10.9 Sorting

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_pos

ition='last', ignore_index=False, key=None)

Parameters:
By: str or list of str
Name or list of names to sort by.
 if axis is 0 or ‘index’ then by may contain index levels and/or column labels.
 if axis is 1 or ‘columns’ then by may contain column levels and/or index labels.

Axis: {0 or ‘index’, 1 or ‘columns’}, default 0
Axis to be sorted.
Ascending: bool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must
match the length of the by.
Inplace: bool, default False
If True, perform operation in-place.
Kind: {‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, default ‘quicksort’
Choice of sorting algorithm. See also numpy.sort() for more
information. mergesort and stable are the only stable algorithms. For Data Frames, this option
is only applied when sorting on a single column or label.
na_position: {‘first’, ‘last’}, default ‘last’
Puts NaNs at the beginning if first; last puts NaNs at the end.
ignore_index: bool, default False
If True, the resulting axis will be labelled 0, 1, …, n - 1.
Key: callable, optional
Apply the key function to the values before sorting. This is similar to the key argument in the
built-in sorted() function, with the notable difference that this key function should be vectorised.
It should expect a Series and return a Series with the same shape as the input. It will be applied
to each column in by independently.

Table 15: Sorting parameters

Chapter 10 : Data Analysis Tool : Pandas

221

Creating a dataframe for demonstration

Code 70: Creating a dataframe for demonstration

Output:

Output 64: Dataframe for demonstration

Sorting Pandas Data Frame

In order to sort the data frame in pandas, function sort_values() is used. Pandas sort_values() can
sort the data frame in Ascending or Descending order.

Code 71: Pandas sort_values() function

Chapter 10 : Data Analysis Tool : Pandas

222

Output:

Output 65: Pandas sort_values() function

10.10 Ufunc

Universal functions in Numpy are simple mathematical functions. It is just a term that we gave
to mathematical functions in the Numpy library. Numpy provides various universal functions
that cover a wide variety of operationsThese functions include standard trigonometric functions,
functions for arithmetic operations, handling complex numbers, statistical functions, etc.
Universal functions have various characteristics which are as follows:

 These functions operates on ndarray (N-dimensional array) i.e Numpy’s array class.
 It performs fast element-wise array operations.
 It supports various features like array broadcasting, type casting etc.
 Numpy, universal functions are objects those belongs to numpy.ufunc class.
 Python functions can also be created as a universal function using frompyfunc library

function.
 Some ufuncs are called automatically when the corresponding arithmetic operator is used

on arrays. For example when addition of two array is performed element-wise using ‘+’
operator then np.add() is called internally.

First, define two series whose index are not identical
A = pd.Series([1,2,3], index=[0,1,2]) #index[0,1,2]
B = pd.Series([10,20,30], index=[1,2,3]) #index[1,2,3]
Second, perform addition of these two series
print(A); print(B)
print(A.add(B))

Chapter 10 : Data Analysis Tool : Pandas

223

Exercise

OBJECTIVE TYPE QUESTIONS

1. Which is performed by a Data Scientist?

a). Defining the question

b). Creating reproducible code

c). Challenging the results

d). All of these

e). None of these

2. Which is one of the significant data science skills?

a). Statistics

b). Machine Learning

c). Data Visualization

d). All of these

e). None of these

3. Which is performed by a Data Scientist?

a). Defining the question

b). Creating reproducible code

c). Challenging the results

d). All of these

e). None of these

4. Which of the following is the correct statement.

a). Pre-processed data is original source of data

b). Raw data is original source of data

c). Raw data is the data obtained after processing steps

d). None of these

Chapter 10 : Data Analysis Tool : Pandas

224

5. Data Analysis is a process of?
a). inspecting data
b). cleaning data

c). transforming data
d). All of the above

6. Which of the following is not a major data analysis approaches?
a). Data Mining

b). Predictive Intelligence

c). Business Intelligence
d). Text Analytics

7. Which of the following is true about regression analysis?
a). answering yes/no questions about the data

b). estimating numerical characteristics of the data

c). modeling relationships within the data

d). describing associations within the data

8. What is true about Data Visualization?
a). Data Visualization is used to communicate information clearly and efficiently to users by
the usage of information graphics such as tables and charts.

b). Data Visualization helps users in analyzing a large amount of data in a simpler way.
c). Data Visualization makes complex data more accessible, understandable, and usable.

d). All of the above

9. Data can be visualized using?
a). graphs
b). charts

c). maps

d). All of the above

10. Which of the following is false?
a). data visualization include the ability to absorb information quickly

b). Data visualization is another form of visual art

c). Data visualization decrease the insights and take solwer decisions

d). None Of the above

Chapter 10 : Data Analysis Tool : Pandas

225

11. Which of the following function provides unsupervised prediction?
a). cl_forecast
b). cl_nowcast

c). cl_precast
d). None of the Mentioned

12. A model of language consists of the categories which does not include________.
a). System Unit

b). structural units.

c). data units
d). empirical units

13. Which of the following are ML methods?
a). based on human supervision

b). supervised Learning
c). semi-reinforcement Learning

d). All of the above

14. Data Analytics uses ___ to get insights from data.
a).Statistical figures

b).Numerical aspects
c).Statistical methods

d).None of the mentioned above

15. Amongst which of the following is / are the types of Linear Regression,
a).Simple Linear Regression

b).Multiple Linear Regression
c).Both A and B

d).None of the mentioned above

1.d 6.b 11.d
2.d 7.c 12.b
3.d 8.d 13.a
4.b 9.d 14.c
5.b 10.c 15.c

Chapter 10 : Data Analysis Tool : Pandas

226

SUBJECTIVE TYPE QUESTIONS

1. Differentiate Between Data Analytics and Data Science
2. How can you avoid overfitting your model?
3. How can you select k for k-means?
4. What is the significance of p-value?
5. How can you calculate accuracy using a confusion matrix?
7. Explain the steps in making a decision tree.
8. What are the feature selection methods used to select the right variables?
9. For the given points, how will you calculate the Euclidean distance in Python?
10. Which of the following machine learning algorithms can be used for inputting missing values
of both categorical and continuous variables?
11. What is Data Science? List the differences between supervised and unsupervised learning.
12. What is Selection Bias?
13. What is a confusion matrix?
14. What do you understand by true positive rate and false-positive rate?
15. What are dimensionality reduction and its benefits?

